Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena)

  1. Danuta M Wisniewska  Is a corresponding author
  2. John M Ratcliffe
  3. Kristian Beedholm
  4. Christian B Christensen
  5. Mark Johnson
  6. Jens C Koblitz
  7. Magnus Wahlberg
  8. Peter T Madsen
  1. Aarhus University, Denmark
  2. University of Southern Denmark, Denmark
  3. University of St Andrews, Scotland
  4. University of Tübingen, Germany

Abstract

Toothed whales use sonar to detect, locate, and track prey. They adjust emitted sound intensity, auditory sensitivity and click rate to target range, and terminate prey pursuits with high-repetition-rate, low-intensity buzzes. However, their narrow acoustic field of view (FOV) is considered stable throughout target approach, which could facilitate prey escape at close-range. Here we show that, like some bats, harbour porpoises can broaden their biosonar beam during the terminal phase of attack but, unlike bats, maintain the ability to change beamwidth within this phase. Based on video, MRI, and acoustic-tag recordings, we propose this flexibility is modulated by the melon and implemented to accommodate dynamic spatial relationships with prey and acoustic complexity of surroundings. Despite independent evolution and different means of sound generation and transmission, whales and bats adaptively change their FOV, suggesting that beamwidth flexibility has been an important driver in the evolution of echolocation for prey tracking.

Article and author information

Author details

  1. Danuta M Wisniewska

    Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
    For correspondence
    danuta.wisniewska@bios.au.dk
    Competing interests
    The authors declare that no competing interests exist.
  2. John M Ratcliffe

    Sound and Behaviour Group, Institute of Biology, University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Kristian Beedholm

    Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Christian B Christensen

    Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Mark Johnson

    Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
    Competing interests
    The authors declare that no competing interests exist.
  6. Jens C Koblitz

    Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Magnus Wahlberg

    Sound and Behaviour Group, Institute of Biology, University of Southern Denmark, Odense M, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  8. Peter T Madsen

    Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Russ Fernald, Stanford University, United States

Ethics

Animal experimentation: The animals are maintained by Fjord&Belt, Denmark, under permits no. SN 343/FY-0014 from the Danish Ministry of Food, Agriculture and Fisheries, and 1996-3446-0021 from the Danish Forest and Nature Agency (under the Danish Ministry of the Environment). Their care and all experiments are in strict accordance with the recommendations of the Danish Ministry of Food, Agriculture and Fisheries (issuing the permit to keep the animals), the Danish Ministry of the Environment (permit for catching the animals) and the Danish Council for Experiments on Animals (always contacted for permits when appropriate - but in the case of this study such permit was not required).

Version history

  1. Received: November 18, 2014
  2. Accepted: March 19, 2015
  3. Accepted Manuscript published: March 20, 2015 (version 1)
  4. Version of Record published: April 29, 2015 (version 2)

Copyright

© 2015, Wisniewska et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,815
    views
  • 589
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Danuta M Wisniewska
  2. John M Ratcliffe
  3. Kristian Beedholm
  4. Christian B Christensen
  5. Mark Johnson
  6. Jens C Koblitz
  7. Magnus Wahlberg
  8. Peter T Madsen
(2015)
Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena)
eLife 4:e05651.
https://doi.org/10.7554/eLife.05651

Share this article

https://doi.org/10.7554/eLife.05651

Further reading

  1. Porpoises use a sophisticated sonar system to locate and track prey.

    1. Ecology
    Ari Grele, Tara J Massad ... Lora A Richards
    Research Article

    Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genus Piper on insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability. We found that reductions of both intraspecific and interspecific Piper diversity had measurable and site-specific effects on herbivory, herbivorous insect richness, and plant mortality. The responses of these ecosystem-relevant processes to reduced intraspecific Piper richness were often similar in magnitude to the effects of reduced interspecific richness. Increased water availability reduced herbivory by 4.2% overall, and the response of herbivorous insect richness and herbivory to water availability were altered by both intra- and interspecific richness in a site-dependent manner. Our results underscore the role of intraspecific and interspecific richness as foundations of ecosystem function and the importance of community and location-specific contingencies in controlling function in complex tropical systems.