Structural evidence for Scc4-dependent localization of cohesin loading

  1. Stephen M Hinshaw
  2. Vasso Makrantoni
  3. Alastair Kerr
  4. Adèle L Marston
  5. Stephen C Harrison  Is a corresponding author
  1. Harvard Medical School, United States
  2. University of Edinburgh, United Kingdom

Abstract

The cohesin ring holds newly replicated sister chromatids together until their separation at anaphase. Initiation of sister chromatid cohesion depends on a separate complex, Scc2NIPBL/Scc4Mau2 (Scc2/4), which loads cohesin onto DNA and determines its localization across the genome. Proper cohesin loading is essential for cell division, and partial defects cause chromosome missegregation and aberrant transcriptional regulation, leading to severe developmental defects in multicellular organisms. We present here a crystal structure showing the interaction between Scc2 and Scc4. Scc4 is a TPR array that envelops an extended Scc2 peptide. Using budding yeast, we demonstrate that a conserved patch on the surface of Scc4 is required to recruit Scc2/4 to centromeres and to build pericentromeric cohesion. These findings reveal the role of Scc4 in determining the localization of cohesin loading and establish a molecular basis for Scc2/4 recruitment to centromeres.

Article and author information

Author details

  1. Stephen M Hinshaw

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  2. Vasso Makrantoni

    Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  3. Alastair Kerr

    Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  4. Adèle L Marston

    Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  5. Stephen C Harrison

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    For correspondence
    harrison@crystal.harvard.edu
    Competing interests
    Stephen C Harrison, Reviewing editor, eLife.

Copyright

© 2015, Hinshaw et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,131
    views
  • 892
    downloads
  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stephen M Hinshaw
  2. Vasso Makrantoni
  3. Alastair Kerr
  4. Adèle L Marston
  5. Stephen C Harrison
(2015)
Structural evidence for Scc4-dependent localization of cohesin loading
eLife 4:e06057.
https://doi.org/10.7554/eLife.06057

Share this article

https://doi.org/10.7554/eLife.06057