Regulation of EGFR signal transduction by analogue-to-digital conversion in endosomes

  1. Roberto Villaseñor
  2. Hidenori Nonaka
  3. Perla Del Conte-Zerial
  4. Yannis Kalaidzidis
  5. Marino Zerial  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany

Abstract

An outstanding question is how receptor tyrosine kinases (RTKs) determine different cell-fate decisions despite sharing the same signalling cascades. Here, we uncovered an unexpected mechanism of RTK trafficking in this process. By quantitative high-resolution FRET-microscopy we found that phosphorylated epidermal growth factor receptor (p-EGFR) is not randomly distributed but packaged at constant mean amounts in endosomes. Cells respond to higher EGF concentrations by increasing the number of endosomes but keeping the mean p-EGFR content per endosome almost constant. By mathematical modelling we found that this mechanism confers both robustness and regulation to signalling output. Different growth factors caused specific changes in endosome number and size in various cell systems and changing the distribution of p-EGFR between endosomes was sufficient to reprogram cell-fate decision upon EGF stimulation. We propose that the packaging of p-RTKs in endosomes is a general mechanism to ensure the fidelity and specificity of the signalling response.

Article and author information

Author details

  1. Roberto Villaseñor

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Hidenori Nonaka

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Perla Del Conte-Zerial

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Yannis Kalaidzidis

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Marino Zerial

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    zerial@mpi-cbg.de
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal studies were conducted in accordance with German animal welfare legislation and in strict pathogen-free conditions in the animal facility of the Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany. Protocols were approved by the Institutional Animal Welfare Officer (Tierschutzbeauftragter) under the license Anzeige der Tötung von Tieren zu wissenschaftlichen Zwecken AZ: 24-9168.24-9/2009-1 (valid from 2009 until 31.12.2012) and AZ: 24-9168.24-9/2012-1(valid from 30.4.2012 through 30.4.2015), obtained from the regional Ethical Commission for Animal Experimentation of Dresden, Germany (Tierversuchskommission, Landesdirektion Dresden).

Copyright

© 2015, Villaseñor et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,836
    views
  • 1,253
    downloads
  • 103
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roberto Villaseñor
  2. Hidenori Nonaka
  3. Perla Del Conte-Zerial
  4. Yannis Kalaidzidis
  5. Marino Zerial
(2015)
Regulation of EGFR signal transduction by analogue-to-digital conversion in endosomes
eLife 4:e06156.
https://doi.org/10.7554/eLife.06156

Share this article

https://doi.org/10.7554/eLife.06156