Speech encoding by coupled cortical theta and gamma oscillations

  1. Alexandre Hyafil  Is a corresponding author
  2. Lorenzo Fontolan
  3. Claire Kabdebon
  4. Boris Gutkin
  5. Anne-Lise Giraud
  1. Ecole Normale Supérieure, France
  2. University of Geneva, Switzerland

Abstract

Many environmental stimuli present a quasi-rhythmic structure at different timescales that the brain needs to decompose and integrate. Cortical oscillations have been proposed as instruments of sensory de-multiplexing, i.e., theparallel processing of different frequency streams in sensorysignals. Yet their causal role in such a process has never been demonstrated. Here we used a neural microcircuit model to address whether coupled theta-gamma oscillations, as observed in human auditory cortex, could underpin the multiscale sensory analysis of speech. We show that, in continuous speech, theta oscillations can flexibly track the syllabic rhythm and temporally organize the phoneme-level response of gamma neurons into a code that enables syllable identification. The tracking of slow speech fluctuations by theta oscillations, and its coupling to gamma-spiking activity both appeared as critical features for accurate speech encoding. These results demonstrate that cortical oscillations can be a key instrument of speech de-multiplexing, parsing, and encoding.

Article and author information

Author details

  1. Alexandre Hyafil

    INSERM U960, Group for Neural Theory, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
    For correspondence
    alexandre.hyafil@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Lorenzo Fontolan

    INSERM U960, Group for Neural Theory, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Claire Kabdebon

    INSERM U960, Group for Neural Theory, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Boris Gutkin

    INSERM U960, Group for Neural Theory, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Anne-Lise Giraud

    Department of Neuroscience, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Hyafil et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,545
    views
  • 1,042
    downloads
  • 144
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandre Hyafil
  2. Lorenzo Fontolan
  3. Claire Kabdebon
  4. Boris Gutkin
  5. Anne-Lise Giraud
(2015)
Speech encoding by coupled cortical theta and gamma oscillations
eLife 4:e06213.
https://doi.org/10.7554/eLife.06213

Share this article

https://doi.org/10.7554/eLife.06213

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Nayoung Kim, Sehhoon Park ... Myung-Ju Ahn
    Research Article

    This study investigates the variability among patients with non-small cell lung cancer (NSCLC) in their responses to immune checkpoint inhibitors (ICIs). Recognizing that patients with advanced-stage NSCLC rarely qualify for surgical interventions, it becomes crucial to identify biomarkers that influence responses to ICI therapy. We conducted an analysis of single-cell transcriptomes from 33 lung cancer biopsy samples, with a particular focus on 14 core samples taken before the initiation of palliative ICI treatment. Our objective was to link tumor and immune cell profiles with patient responses to ICI. We discovered that ICI non-responders exhibited a higher presence of CD4+ regulatory T cells, resident memory T cells, and TH17 cells. This contrasts with the diverse activated CD8+ T cells found in responders. Furthermore, tumor cells in non-responders frequently showed heightened transcriptional activity in the NF-kB and STAT3 pathways, suggesting a potential inherent resistance to ICI therapy. Through the integration of immune cell profiles and tumor molecular signatures, we achieved an discriminative power (area under the curve [AUC]) exceeding 95% in identifying patient responses to ICI treatment. These results underscore the crucial importance of the interplay between tumor and immune microenvironment, including within metastatic sites, in affecting the effectiveness of ICIs in NSCLC.

    1. Computational and Systems Biology
    2. Developmental Biology
    Rosalio Reyes, Arthur D Lander, Marcos Nahmad
    Research Article

    Understanding the principles underlying the design of robust, yet flexible patterning systems is a key problem in developmental biology. In the Drosophila wing, Hedgehog (Hh) signaling determines patterning outputs using dynamical properties of the Hh gradient. In particular, the pattern of collier (col) is established by the steady-state Hh gradient, whereas the pattern of decapentaplegic (dpp), is established by a transient gradient of Hh known as the Hh overshoot. Here we use mathematical modeling to suggest that this dynamical interpretation of the Hh gradient results in specific robustness and precision properties. For instance, the location of the anterior border of col, which is subject to self-enhanced ligand degradation is more robustly specified than that of dpp to changes in morphogen dosage, and we provide experimental evidence of this prediction. However, the anterior border of dpp expression pattern, which is established by the overshoot gradient is much more precise to what would be expected by the steady-state gradient. Therefore, the dynamical interpretation of Hh signaling offers tradeoffs between