Aven recognition of RNA G-quadruplexes regulates translation of the mixed lineage leukemia protooncogenes

Abstract

G-quadruplexes (G4) are extremely stable secondary structures forming stacks of guanine tetrads. DNA G4 structures have been extensively studied, however, less is known about G4 motifs in mRNAs, especially in their coding sequences. Herein, we show that Aven stimulates the mRNA translation of the mixed lineage leukemia (MLL) proto-oncogene in an arginine methylation-dependent manner. The Aven RGG/RG motif bound G4 structures within the coding regions of the MLL1 and MLL4 mRNAs increasing their polysomal association and translation, resulting in the induction of transcription of leukemic genes. The DHX36 RNA helicase associated with the Aven complex and was required for optimal translation of G4 mRNAs. Depletion of Aven led to a decrease in synthesis of MLL1 and MLL4 proteins esulting in reduced proliferation of leukemic cells. These findings identify an Aven-centered complex that stimulates the translation of G4 harboring mRNAs, thereby promoting survival of leukemic cells.

Article and author information

Author details

  1. Palaniraja Thandapani

    Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Jingwen Song

    Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Valentina Gandin

    Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Yutian Cai

    Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Samuel G Rouleau

    Département de Biochimie, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Jean-Michel Garant

    Département de Biochimie, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Francois-Michel Boisvert

    Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Zhenbao Yu

    Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean-Pierre Perreault

    Département de Biochimie, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Ivan Topisirovic

    Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Stéphane Richard

    Terry Fox Molecular Oncology Group, Segal Cancer Center, McGill University, Montreal, Canada
    For correspondence
    stephane.richard@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Thandapani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,695
    views
  • 825
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Palaniraja Thandapani
  2. Jingwen Song
  3. Valentina Gandin
  4. Yutian Cai
  5. Samuel G Rouleau
  6. Jean-Michel Garant
  7. Francois-Michel Boisvert
  8. Zhenbao Yu
  9. Jean-Pierre Perreault
  10. Ivan Topisirovic
  11. Stéphane Richard
(2015)
Aven recognition of RNA G-quadruplexes regulates translation of the mixed lineage leukemia protooncogenes
eLife 4:e06234.
https://doi.org/10.7554/eLife.06234

Share this article

https://doi.org/10.7554/eLife.06234

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.