Oxyntomodulin regulates resetting of the liver circadian clock by food

  1. Dominic Landgraf
  2. Anthony H Tsang
  3. Alexei Leliavski
  4. Christiane E Koch
  5. Johanna L Barclay
  6. Daniel J Drucker
  7. Henrik Oster  Is a corresponding author
  1. University of California, San Diego, United States
  2. Max Planck Institute for Biophysical Chemistry, Germany
  3. University of Lübeck, Germany
  4. University of Toronto, Canada

Abstract

Circadian clocks coordinate 24-hr rhythms of behavior and physiology. In mammals, a master clock residing in the suprachiasmatic nucleus (SCN) is reset by the light-dark cycle, while timed food intake is a potent synchronizer of peripheral clocks such as the liver. Alterations in food intake rhythms can uncouple peripheral clocks from the SCN, resulting in internal desynchrony, which promotes obesity and metabolic disorders. Pancreas-derived hormones such as insulin and glucagon have been implicated in signaling mealtime to peripheral clocks. Here we identify a novel, more direct pathway of food-driven liver clock resetting involving oxyntomodulin (OXM). In mice, food intake stimulates OXM secretion from the gut, which resets liver transcription rhythms via induction of the core clock genes Per1 and 2. Inhibition of OXM signaling blocks food-mediated resetting of hepatocyte clocks. These data reveal a direct link between gastric filling with food and circadian rhythm phasing in metabolic tissues.

Article and author information

Author details

  1. Dominic Landgraf

    Department of Psychiatry, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Anthony H Tsang

    Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexei Leliavski

    Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Christiane E Koch

    Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Johanna L Barclay

    Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel J Drucker

    Department of Medicine, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Henrik Oster

    Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    For correspondence
    henrik.oster@uksh.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Louis Ptáček, University of California, San Francisco, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the German law for animal welfare (TierschGes). All animals were handled according to approved institutional animal care and use committee protocols of the Max Planck Institutes Göttingen and the University of Lübeck. The protocol was approved by the ethical committees of the Niedersächsisches Amt für Verbraucherschutz und Lebensmittelsicherheit (LAVES) and the Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume (MELUR; license numbers V312-7224.122-4 and 33.12-42502-04-12/0893). Every effort was made to minimize suffering

Version history

  1. Received: December 23, 2014
  2. Accepted: March 27, 2015
  3. Accepted Manuscript published: March 30, 2015 (version 1)
  4. Version of Record published: May 11, 2015 (version 2)

Copyright

© 2015, Landgraf et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,987
    views
  • 773
    downloads
  • 86
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dominic Landgraf
  2. Anthony H Tsang
  3. Alexei Leliavski
  4. Christiane E Koch
  5. Johanna L Barclay
  6. Daniel J Drucker
  7. Henrik Oster
(2015)
Oxyntomodulin regulates resetting of the liver circadian clock by food
eLife 4:e06253.
https://doi.org/10.7554/eLife.06253

Share this article

https://doi.org/10.7554/eLife.06253

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Henning Mühlenbeck, Yuko Tsutsui ... Cyril Zipfel
    Research Article

    Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.