Oxyntomodulin regulates resetting of the liver circadian clock by food

  1. Dominic Landgraf
  2. Anthony H Tsang
  3. Alexei Leliavski
  4. Christiane E Koch
  5. Johanna L Barclay
  6. Daniel J Drucker
  7. Henrik Oster  Is a corresponding author
  1. University of California, San Diego, United States
  2. Max Planck Institute for Biophysical Chemistry, Germany
  3. University of Lübeck, Germany
  4. University of Toronto, Canada

Abstract

Circadian clocks coordinate 24-hr rhythms of behavior and physiology. In mammals, a master clock residing in the suprachiasmatic nucleus (SCN) is reset by the light-dark cycle, while timed food intake is a potent synchronizer of peripheral clocks such as the liver. Alterations in food intake rhythms can uncouple peripheral clocks from the SCN, resulting in internal desynchrony, which promotes obesity and metabolic disorders. Pancreas-derived hormones such as insulin and glucagon have been implicated in signaling mealtime to peripheral clocks. Here we identify a novel, more direct pathway of food-driven liver clock resetting involving oxyntomodulin (OXM). In mice, food intake stimulates OXM secretion from the gut, which resets liver transcription rhythms via induction of the core clock genes Per1 and 2. Inhibition of OXM signaling blocks food-mediated resetting of hepatocyte clocks. These data reveal a direct link between gastric filling with food and circadian rhythm phasing in metabolic tissues.

Article and author information

Author details

  1. Dominic Landgraf

    Department of Psychiatry, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Anthony H Tsang

    Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexei Leliavski

    Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Christiane E Koch

    Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Johanna L Barclay

    Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel J Drucker

    Department of Medicine, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Henrik Oster

    Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    For correspondence
    henrik.oster@uksh.de
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the German law for animal welfare (TierschGes). All animals were handled according to approved institutional animal care and use committee protocols of the Max Planck Institutes Göttingen and the University of Lübeck. The protocol was approved by the ethical committees of the Niedersächsisches Amt für Verbraucherschutz und Lebensmittelsicherheit (LAVES) and the Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume (MELUR; license numbers V312-7224.122-4 and 33.12-42502-04-12/0893). Every effort was made to minimize suffering

Copyright

© 2015, Landgraf et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dominic Landgraf
  2. Anthony H Tsang
  3. Alexei Leliavski
  4. Christiane E Koch
  5. Johanna L Barclay
  6. Daniel J Drucker
  7. Henrik Oster
(2015)
Oxyntomodulin regulates resetting of the liver circadian clock by food
eLife 4:e06253.
https://doi.org/10.7554/eLife.06253

Share this article

https://doi.org/10.7554/eLife.06253

Further reading

    1. Biochemistry and Chemical Biology
    Adrian CD Fuchs
    Research Article

    The protein ligase Connectase can be used to fuse proteins to small molecules, solid carriers, or other proteins. Compared to other protein ligases, it offers greater substrate specificity, higher catalytic efficiency, and catalyzes no side reactions. However, its reaction is reversible, resulting in only 50% fusion product from two equally abundant educts. Here, we present a simple method to reliably obtain 100% fusion product in 1:1 conjugation reactions. This method is efficient for protein-protein or protein-peptide fusions at the N- or C-termini. It enables the generation of defined and completely labeled antibody conjugates with one fusion partner on each chain. The reaction requires short incubation times with small amounts of enzyme and is effective even at low substrate concentrations and at low temperatures. With these characteristics, it presents a valuable new tool for bioengineering.

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.