Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes

  1. Glen Wheeler  Is a corresponding author
  2. Takahiro Ishikawa
  3. Varissa Pornsaksit
  4. Nicholas Smirnoff
  1. Marine Biological Association, United Kingdom
  2. Shimane University, Japan
  3. University of Exeter, United Kingdom

Abstract

Ascorbic acid (vitamin C) is an enzyme co-factor in eukaryotes that also plays a critical role in protecting photosynthetic eukaryotes against damaging reactive oxygen species derived from the chloroplast. Many animal lineages, including primates, have become ascorbate auxotrophs due to the loss of the terminal enzyme in their biosynthetic pathway, L-gulonolactone oxidase (GULO). The alternative pathways found in land plants and Euglena use a different terminal enzyme, L-galactonolactone dehydrogenase (GLDH). The evolutionary processes leading to these differing pathways and their contribution to the cellular roles of ascorbate remain unclear. Here we present molecular and biochemical evidence demonstrating that GULO was functionally replaced with GLDH in photosynthetic eukaryote lineages following plastid acquisition. GULO has therefore been lost repeatedly throughout eukaryote evolution. The formation of the alternative biosynthetic pathways in photosynthetic eukaryotes uncoupled ascorbate synthesis from hydrogen peroxide production and likely contributed to the rise of ascorbate as a major photoprotective antioxidant.

Article and author information

Author details

  1. Glen Wheeler

    Marine Biological Association, Plymouth, United Kingdom
    For correspondence
    glw@mba.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Takahiro Ishikawa

    Department of Life Science and Biotechnology, Shimane University, Matsue, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Varissa Pornsaksit

    Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicholas Smirnoff

    Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Wheeler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,334
    views
  • 951
    downloads
  • 136
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Glen Wheeler
  2. Takahiro Ishikawa
  3. Varissa Pornsaksit
  4. Nicholas Smirnoff
(2015)
Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes
eLife 4:e06369.
https://doi.org/10.7554/eLife.06369

Share this article

https://doi.org/10.7554/eLife.06369

Further reading

    1. Evolutionary Biology
    Mattias Siljestam, Claus Rueffler
    Research Article Updated

    The majority of highly polymorphic genes are related to immune functions and with over 100 alleles within a population, genes of the major histocompatibility complex (MHC) are the most polymorphic loci in vertebrates. How such extraordinary polymorphism arose and is maintained is controversial. One possibility is heterozygote advantage (HA), which can in principle maintain any number of alleles, but biologically explicit models based on this mechanism have so far failed to reliably predict the coexistence of significantly more than 10 alleles. We here present an eco-evolutionary model showing that evolution can result in the emergence and maintenance of more than 100 alleles under HA if the following two assumptions are fulfilled: first, pathogens are lethal in the absence of an appropriate immune defence; second, the effect of pathogens depends on host condition, with hosts in poorer condition being affected more strongly. Thus, our results show that HA can be a more potent force in explaining the extraordinary polymorphism found at MHC loci than currently recognised.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Pierre Barrat-Charlaix, Richard A Neher
    Research Article

    As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host’s immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. If variant growth dynamics and reshaping of host-immunity operate on comparable time scales, viral adaptation is determined by eco-evolutionary interactions that are not captured by models of rapid evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interaction between an evolving viral population in a dynamic but immunologically diverse host population. We show that depending on strain cross-immunity, heterogeneity of the host population, and durability of immune responses, escape variants initially grow exponentially, but lose their growth advantage before reaching high frequencies. Their subsequent dynamics follows an anomalous random walk determined by future escape variants and results in variant trajectories that are unpredictable. This model can explain the apparent contradiction between the clearly adaptive nature of antigenic evolution and the quasi-neutral dynamics of high-frequency variants observed for influenza viruses.