1. Evolutionary Biology
  2. Plant Biology
Download icon

Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes

  1. Glen Wheeler  Is a corresponding author
  2. Takahiro Ishikawa
  3. Varissa Pornsaksit
  4. Nicholas Smirnoff
  1. Marine Biological Association, United Kingdom
  2. Shimane University, Japan
  3. University of Exeter, United Kingdom
Research Article
  • Cited 72
  • Views 3,930
  • Annotations
Cite this article as: eLife 2015;4:e06369 doi: 10.7554/eLife.06369

Abstract

Ascorbic acid (vitamin C) is an enzyme co-factor in eukaryotes that also plays a critical role in protecting photosynthetic eukaryotes against damaging reactive oxygen species derived from the chloroplast. Many animal lineages, including primates, have become ascorbate auxotrophs due to the loss of the terminal enzyme in their biosynthetic pathway, L-gulonolactone oxidase (GULO). The alternative pathways found in land plants and Euglena use a different terminal enzyme, L-galactonolactone dehydrogenase (GLDH). The evolutionary processes leading to these differing pathways and their contribution to the cellular roles of ascorbate remain unclear. Here we present molecular and biochemical evidence demonstrating that GULO was functionally replaced with GLDH in photosynthetic eukaryote lineages following plastid acquisition. GULO has therefore been lost repeatedly throughout eukaryote evolution. The formation of the alternative biosynthetic pathways in photosynthetic eukaryotes uncoupled ascorbate synthesis from hydrogen peroxide production and likely contributed to the rise of ascorbate as a major photoprotective antioxidant.

Article and author information

Author details

  1. Glen Wheeler

    Marine Biological Association, Plymouth, United Kingdom
    For correspondence
    glw@mba.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Takahiro Ishikawa

    Department of Life Science and Biotechnology, Shimane University, Matsue, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Varissa Pornsaksit

    Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicholas Smirnoff

    Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Joerg Bohlmann, University of British Columbia, Canada

Publication history

  1. Received: January 7, 2015
  2. Accepted: March 12, 2015
  3. Accepted Manuscript published: March 13, 2015 (version 1)
  4. Version of Record published: April 15, 2015 (version 2)

Copyright

© 2015, Wheeler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,930
    Page views
  • 766
    Downloads
  • 72
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Evolutionary Biology
    Joshua T Washington et al.
    Research Article

    Given the importance of DNA methylation in protection of the genome against transposable elements and transcriptional regulation in other taxonomic groups, the diversity in both levels and patterns of DNA methylation in the insects raises questions about its function and evolution. We show that the maintenance DNA methyltransferase, DNMT1, affects meiosis and is essential to fertility in milkweed bugs, Oncopeltus fasciatus, while DNA methylation is not required in somatic cells. Our results support the hypothesis that Dnmt1 is required for the transition of germ cells to gametes in O. fasciatus and that this function is conserved in male and female gametogenesis. They further suggest that DNMT1 has a function independent of DNA methylation in germ cells. Our results raise the question of how a gene so critical in fitness across multiple insect species can have diverged widely across the insect tree of life.

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Rachel A Johnston et al.
    Research Article

    In some mammals and many social insects, highly cooperative societies are characterized by reproductive division of labor, in which breeders and nonbreeders become behaviorally and morphologically distinct. While differences in behavior and growth between breeders and nonbreeders have been extensively described, little is known of their molecular underpinnings. Here, we investigate the consequences of breeding for skeletal morphology and gene regulation in highly cooperative Damaraland mole-rats. By experimentally assigning breeding 'queen' status versus nonbreeder status to age-matched littermates, we confirm that queens experience vertebral growth that likely confers advantages to fecundity. However, they also up-regulate bone resorption pathways and show reductions in femoral mass, which predicts increased vulnerability to fracture. Together, our results show that, as in eusocial insects, reproductive division of labor in mole-rats leads to gene regulatory rewiring and extensive morphological plasticity. However, in mole-rats, concentrated reproduction is also accompanied by costs to bone strength.