Kinetochore-independent chromosome segregation driven by lateral microtubule bundles

  1. Christina C Muscat
  2. Keila M Torre-Santiago
  3. Michael V Tran
  4. James A Powers
  5. Sarah M Wignall  Is a corresponding author
  1. Northwestern University, United States
  2. Indiana University, United States

Abstract

During cell division, chromosomes attach to spindle microtubules at sites called kinetochores, and force generated at the kinetochore-microtubule interface is the main driver of chromosome movement. Surprisingly, kinetochores are not required for chromosome segregation on acentrosomal spindles in C. elegans oocytes, but the mechanism driving chromosomes apart in their absence is not understood. Here we show that lateral microtubule-chromosome associations established during prometaphase remain intact during anaphase to facilitate separation, defining a novel form of kinetochore-independent segregation. Chromosome dynamics during congression and segregation are controlled by opposing forces; plus-end directed forces are mediated by a protein complex that forms a ring around the chromosome center and dynein on chromosome arms provides a minus-end force. At anaphase onset, ring removal shifts the balance between these forces, triggering poleward movement along lateral microtubule bundles. This represents an elegant strategy for controlling chromosomal movements during cell division distinct from the canonical kinetochore-driven mechanism.

Article and author information

Author details

  1. Christina C Muscat

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Keila M Torre-Santiago

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael V Tran

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James A Powers

    Light Microscopy Imaging Center, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah M Wignall

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    For correspondence
    s-wignall@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Muscat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,119
    views
  • 986
    downloads
  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christina C Muscat
  2. Keila M Torre-Santiago
  3. Michael V Tran
  4. James A Powers
  5. Sarah M Wignall
(2015)
Kinetochore-independent chromosome segregation driven by lateral microtubule bundles
eLife 4:e06462.
https://doi.org/10.7554/eLife.06462

Share this article

https://doi.org/10.7554/eLife.06462

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.