Age-dependent electroencephalogram (EEG) patterns during sevoflurane general anesthesia in infants

  1. Laura Cornelissen  Is a corresponding author
  2. Seong-Eun Kim
  3. Patrick L Purdon
  4. Emery N Brown
  5. Charles B Berde
  1. Boston Children's Hospital, United States
  2. Massachusetts Institute of Technology, United States
  3. Massachusetts General Hospital, United States

Abstract

Electroencephalogram (EEG) approaches may provide important information about developmental changes in brain-state dynamics during general anesthesia. We used multi-electrode EEG, analyzed with multitaper-spectral methods and video recording of body movement to characterize the spatiotemporal dynamics of brain activity in 36 infants 0-6 months old when awake, and during maintenance-of and emergence-from sevoflurane general anesthesia. During maintenance: 1)slow-delta oscillations were present in all ages; 2)theta and alpha oscillations emerged around 4months; 3)unlike adults, all infants lacked frontal alpha predominance and coherence. Alpha power was greatest during maintenance, compared to awake and emergence in infants at 4-6months. During emergence, theta and alpha power decreased with decreasing sevoflurane concentration in infants at 4-6months. These EEG dynamic differences are likely due to developmental factors including regional differences in synaptogenesis, glucose metabolism, and myelination across the cortex. We demonstrate the need to apply age-adjusted analytic approaches to develop neurophysiologic-based strategies for pediatric anesthetic state monitoring.

Article and author information

Author details

  1. Laura Cornelissen

    Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, United States
    For correspondence
    laura.cornelissen@childrens.harvard.edu
    Competing interests
    No competing interests declared.
  2. Seong-Eun Kim

    Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Patrick L Purdon

    Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    Patrick L Purdon, P.L.P. and E.N.B. have patents pending on brain monitoring during general anesthesia and sedation, and have a patent licensing agreement with Masimo Corporation .Application Numbers: P.L.P & E.N.B.: 20150080754, 20150011907, 20140323898, 20140323897, 20140316218, 20140316217, 20140187973, 20140180160; P.L.P: 20080306397.
  4. Emery N Brown

    Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    Emery N Brown, P.L.P. and E.N.B. have patents pending on brain monitoring during general anesthesia and sedation, and have a patent licensing agreement with Masimo Corporation. Application Numbers: P.L.P & E.N.B.: 20150080754, 20150011907, 20140323898, 20140323897, 20140316218, 20140316217, 20140187973, 20140180160; P.L.P: 20080306397.
  5. Charles B Berde

    Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Jody C Culham, University of Western Ontario, Canada

Ethics

Human subjects: Boston Children's Hospital Institutional Review Board (IRB) approved the study (IRB Protocol Number: IRB-P00003544), and informed written consent was obtained from parents/legal guardians before each study. The study conformed to the standards set by the Declaration of Helsinki and Good Clinical Practice guidelines.

Version history

  1. Received: January 15, 2015
  2. Accepted: June 22, 2015
  3. Accepted Manuscript published: June 23, 2015 (version 1)
  4. Version of Record published: July 15, 2015 (version 2)

Copyright

© 2015, Cornelissen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,421
    views
  • 1,008
    downloads
  • 110
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Cornelissen
  2. Seong-Eun Kim
  3. Patrick L Purdon
  4. Emery N Brown
  5. Charles B Berde
(2015)
Age-dependent electroencephalogram (EEG) patterns during sevoflurane general anesthesia in infants
eLife 4:e06513.
https://doi.org/10.7554/eLife.06513

Share this article

https://doi.org/10.7554/eLife.06513

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.