SMC condensin entraps chromosomal DNA by an ATP hydrolysisdependent loading mechanism in Bacillus subtilis

  1. Larissa Wilhelm
  2. Frank Bürmann
  3. Anita Minnen
  4. Ho-Chul Shin
  5. Christopher P Toseland
  6. Byung-Ha Oh
  7. Stephan Gruber  Is a corresponding author
  1. Max Planck Institute of Biochemistry, Germany
  2. Korea Research Institute of Bioscience and Biotechnology, Republic of Korea
  3. Korea Advanced Institute of Science and Technology, Republic of Korea

Abstract

Smc-ScpAB forms elongated, annular structures that promote chromosome segregation, presumably by compacting and resolving sister DNA molecules. The mechanistic basis for its action, however, is only poorly understood. Here, we have established a physical assay to determine whether the binding of condensin to native chromosomes in Bacillus subtilis involves entrapment of DNA by the Smc-ScpAB ring. To do so, we have chemically cross-linked the three ring interfaces in Smc-ScpAB and thereafter isolated intact chromosomes under protein denaturing conditions. Exclusively species of Smc-ScpA, which were previously cross-linked into covalent rings, remained associated with chromosomal DNA. DNA entrapment is abolished by mutations that interfere with the Smc ATPase cycle and strongly reduced when the recruitment factor ParB is deleted, implying that most Smc-ScpAB is loaded onto the chromosome at parS sites near the replication origin. We furthermore report a physical interaction between native Smc-ScpAB and chromosomal DNA fragments.

Article and author information

Author details

  1. Larissa Wilhelm

    Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Frank Bürmann

    Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Anita Minnen

    Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Ho-Chul Shin

    Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Christopher P Toseland

    Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Byung-Ha Oh

    Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephan Gruber

    Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany
    For correspondence
    sgruber@biochem.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Wilhelm et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,204
    views
  • 972
    downloads
  • 143
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Larissa Wilhelm
  2. Frank Bürmann
  3. Anita Minnen
  4. Ho-Chul Shin
  5. Christopher P Toseland
  6. Byung-Ha Oh
  7. Stephan Gruber
(2015)
SMC condensin entraps chromosomal DNA by an ATP hydrolysisdependent loading mechanism in Bacillus subtilis
eLife 4:e06659.
https://doi.org/10.7554/eLife.06659

Share this article

https://doi.org/10.7554/eLife.06659

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.