Quality control of transcription start site selection by Nonsense-Mediated-mRNA Decay

  1. Christophe Malabat
  2. Frank Feuerbach
  3. Laurence Ma
  4. Cosmin Saveanu
  5. Alain Jacquier  Is a corresponding author
  1. Centre National de la Recherche Scientifique, France
  2. Institut Pasteur, France

Abstract

Nonsense-mediated mRNA decay (NMD) is a translation-dependent RNA quality-control pathway targeting transcripts such as messenger RNAs harboring premature stop-codons or short upstream open reading frame (uORFs). Our transcription start sites (TSSs) analysis of Saccharomyces cerevisiae cells deficient for RNA degradation pathways revealed that about half of the pervasive transcripts are degraded by NMD, which provides a fail-safe mechanism to remove spurious transcripts that escaped degradation in the nucleus. Moreover, we found that the low specificity of RNA polymerase II TSSs selection generates, for 47% of the expressed genes, NMD-sensitive transcript isoforms carrying uORFs or starting downstream of the ATG START codon. Despite the low abundance of this last category of isoforms, their presence seems to constrain genomic sequences, as suggested by the significant bias against in-frame ATGs specifically found at the beginning of the corresponding genes and reflected by a depletion of methionines in the N-terminus of the encoded proteins.

Article and author information

Author details

  1. Christophe Malabat

    Institut Pasteur, UMR3525, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Frank Feuerbach

    Institut Pasteur, UMR3525, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Laurence Ma

    Plate-Forme Génomique, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Cosmin Saveanu

    Institut Pasteur, UMR3525, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Alain Jacquier

    Institut Pasteur, UMR3525, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Paris, France
    For correspondence
    alain.jacquier@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Malabat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,738
    views
  • 929
    downloads
  • 116
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christophe Malabat
  2. Frank Feuerbach
  3. Laurence Ma
  4. Cosmin Saveanu
  5. Alain Jacquier
(2015)
Quality control of transcription start site selection by Nonsense-Mediated-mRNA Decay
eLife 4:e06722.
https://doi.org/10.7554/eLife.06722

Share this article

https://doi.org/10.7554/eLife.06722

Further reading

    1. Chromosomes and Gene Expression
    Carlos Moreno-Yruela, Beat Fierz
    Insight

    Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.