MutS/MutL crystal structure reveals that the MutS sliding clamp loads MutL onto DNA

  1. Flora S Groothuizen
  2. Ines Winkler
  3. Michele Cristóvão
  4. Alexander Fish
  5. Herrie H K Winterwerp
  6. Annet Reumer
  7. Andreas D Marx
  8. Nicolaas Hermans
  9. Robert A Nicholls
  10. Garib N Murshudov
  11. Joyce H G Lebbink
  12. Peter Friedhoff
  13. Titia K Sixma  Is a corresponding author
  1. Netherlands Cancer Institute, Netherlands
  2. Justus-Liebig-University, Germany
  3. Erasmus Medical Center, Netherlands
  4. MRC Laboratory of Molecular Biology, United Kingdom

Abstract

To avoid mutations in the genome, DNA replication is generally followed by DNA mismatch repair (MMR). MMR starts when a MutS homolog recognizes a mismatch and undergoes an ATP-dependent transformation to an elusive sliding clamp state. How this transient state promotes MutL homolog recruitment and activation of repair is unclear. Here we present a crystal structure of the MutS/MutL complex using a site-specifically crosslinked complex and examine how large conformational changes lead to activation of MutL. The structure captures MutS in the sliding clamp conformation, where tilting of the MutS subunits across each other pushes DNA into a new channel, and reorientation of the connector domain creates an interface for MutL with both MutS subunits. Our work explains how the sliding clamp promotes loading of MutL onto DNA, to activate downstream effectors. We thus elucidate a crucial mechanism that ensures that MMR is initiated only after detection of a DNA mismatch.

Article and author information

Author details

  1. Flora S Groothuizen

    Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Ines Winkler

    Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Michele Cristóvão

    Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexander Fish

    Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Herrie H K Winterwerp

    Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Annet Reumer

    Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Andreas D Marx

    Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Nicolaas Hermans

    Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Robert A Nicholls

    Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Garib N Murshudov

    Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Joyce H G Lebbink

    Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  12. Peter Friedhoff

    Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Titia K Sixma

    Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
    For correspondence
    t.sixma@nki.nl
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Groothuizen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Flora S Groothuizen
  2. Ines Winkler
  3. Michele Cristóvão
  4. Alexander Fish
  5. Herrie H K Winterwerp
  6. Annet Reumer
  7. Andreas D Marx
  8. Nicolaas Hermans
  9. Robert A Nicholls
  10. Garib N Murshudov
  11. Joyce H G Lebbink
  12. Peter Friedhoff
  13. Titia K Sixma
(2015)
MutS/MutL crystal structure reveals that the MutS sliding clamp loads MutL onto DNA
eLife 4:e06744.
https://doi.org/10.7554/eLife.06744

Share this article

https://doi.org/10.7554/eLife.06744

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.