Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells

  1. Patrick Laurette
  2. Thomas Strub
  3. Dana Koludrovic
  4. Céline Keime
  5. Stéphanie Le Gras
  6. Hannah Seberg
  7. Eric Van Otterloo
  8. Hana Imrichova
  9. Robert Siddaway
  10. Stein Aerts
  11. Robert A Cornell
  12. Gabrielle Mengus
  13. Irwin Davidson  Is a corresponding author
  1. Institut de Génétique et de Biologie Moléculaire et Cellulaire, France
  2. Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, France

Abstract

Microphthalmia-associated transcription factor (MITF) is the master regulator of the melanocyte lineage. To understand how MITF regulates transcription, we used tandem affinity purification and mass spectrometry to define a comprehensive MITF interactome identifying novel cofactors involved in transcription, DNA replication and repair and chromatin organisation. We show that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7. BRG1 is essential for melanoma cell proliferation in vitro and for normal melanocyte development in vivo. MITF and SOX10 actively recruit BRG1 to a set of MITF-associated regulatory elements (MAREs) at active enhancers. Combinations of MITF, SOX10, TFAP2A and YY1 bind between two BRG1-occupied nucleosomes thus defining both a signature of transcription factors essential for the melanocyte lineage and a specific chromatin organisation of the regulatory elements they occupy. BRG1 also regulates the dynamics of MITF genomic occupancy. MITF-BRG1 interplay thus plays an essential role in transcription regulation in melanoma.

Article and author information

Author details

  1. Patrick Laurette

    Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
    Competing interests
    No competing interests declared.
  2. Thomas Strub

    Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
    Competing interests
    No competing interests declared.
  3. Dana Koludrovic

    Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
    Competing interests
    No competing interests declared.
  4. Céline Keime

    Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
    Competing interests
    No competing interests declared.
  5. Stéphanie Le Gras

    Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Strasbourg, France
    Competing interests
    No competing interests declared.
  6. Hannah Seberg

    Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
    Competing interests
    No competing interests declared.
  7. Eric Van Otterloo

    Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
    Competing interests
    No competing interests declared.
  8. Hana Imrichova

    Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
    Competing interests
    No competing interests declared.
  9. Robert Siddaway

    Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
    Competing interests
    No competing interests declared.
  10. Stein Aerts

    Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
    Competing interests
    No competing interests declared.
  11. Robert A Cornell

    Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
    Competing interests
    No competing interests declared.
  12. Gabrielle Mengus

    Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Strasbourg, France
    Competing interests
    No competing interests declared.
  13. Irwin Davidson

    Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
    For correspondence
    irwin@igbmc.fr
    Competing interests
    Irwin Davidson, Reviewing editor, eLife.

Reviewing Editor

  1. Michael R Green, Howard Hughes Medical Institute, University of Massachusetts Medical School, United States

Ethics

Animal experimentation: Animal experiments were performed in compliance with National Animal Care Guidelines (European Commission directive 86/609/CEE; French decree no. 87-848).

Version history

  1. Received: February 6, 2015
  2. Accepted: March 24, 2015
  3. Accepted Manuscript published: March 24, 2015 (version 1)
  4. Version of Record published: April 23, 2015 (version 2)

Copyright

© 2015, Laurette et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,025
    views
  • 1,191
    downloads
  • 138
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Patrick Laurette
  2. Thomas Strub
  3. Dana Koludrovic
  4. Céline Keime
  5. Stéphanie Le Gras
  6. Hannah Seberg
  7. Eric Van Otterloo
  8. Hana Imrichova
  9. Robert Siddaway
  10. Stein Aerts
  11. Robert A Cornell
  12. Gabrielle Mengus
  13. Irwin Davidson
(2015)
Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells
eLife 4:e06857.
https://doi.org/10.7554/eLife.06857

Share this article

https://doi.org/10.7554/eLife.06857

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.