NKX2-5 mutations causative for congenital heart disease retain functionality and are directed to hundreds of targets

Abstract

To model cardiac gene regulatory networks in health and disease we used DamID to establish robust target gene sets for the cardiac homeodomain factor NKX2-5 and two congenital heart disease-associated mutants carrying a crippled homeodomain, which normally functions as DNA- and protein-binding interface. Despite compromised direct DNA-binding, NKX2-5 mutants retained partial functionality and bound hundreds of targets, including NKX2-5 wild type targets and unique sets of 'off-targets'. NKX2-5∆HD, which lacks the entire homeodomain, could still dimerise with wild type NKX2-5 and its cofactors, including newly-discovered cofactors of the ETS family, through the conserved tyrosine-rich domain (YRD). NKX2-5∆HD off-targets showed overrepresentation of many binding motifs, including ETS motifs, the majority co-occupied by ETS proteins as determined by DamID. Off-targets of an NKX2-5 YRD mutant were not enriched in ETS targets. Our study reveals off-target binding and transcriptional activity for NKX2-5 mutations driven in part by cofactor interactions, suggesting a novel type of gain-of-function in congenital heart disease.

Article and author information

Author details

  1. Romaric Bouveret

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    For correspondence
    r.bouveret@victorchang.edu.au
    Competing interests
    The authors declare that no competing interests exist.
  2. Ashley J Waardenberg

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Nicole Schonrock

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Mirana Ramialison

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Tram Doan

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Danielle de Jong

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Antoine Bondue

    Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  8. Gurpreet Kaur

    European Molecular Biology Laboratory, Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Stephanie Mohamed

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Hananeh Fonoudi

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Chiann-mun Chen

    Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Merridee Wouters

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. Shoumo Bhattacharya

    Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Nicolas Plachta

    European Molecular Biology Laboratory, Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. Sally L Dunwoodie

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  16. Gavin Chapman

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  17. Cédric Blanpain

    Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  18. Richard P Harvey

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Animal experimentation was performed with approval of the Garvan Institute/St Vincent's Hospital Animal Ethics Committee (Project numbers 10/19 and 10/01).

Copyright

© 2015, Bouveret et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Romaric Bouveret
  2. Ashley J Waardenberg
  3. Nicole Schonrock
  4. Mirana Ramialison
  5. Tram Doan
  6. Danielle de Jong
  7. Antoine Bondue
  8. Gurpreet Kaur
  9. Stephanie Mohamed
  10. Hananeh Fonoudi
  11. Chiann-mun Chen
  12. Merridee Wouters
  13. Shoumo Bhattacharya
  14. Nicolas Plachta
  15. Sally L Dunwoodie
  16. Gavin Chapman
  17. Cédric Blanpain
  18. Richard P Harvey
(2015)
NKX2-5 mutations causative for congenital heart disease retain functionality and are directed to hundreds of targets
eLife 4:e06942.
https://doi.org/10.7554/eLife.06942

Share this article

https://doi.org/10.7554/eLife.06942

Further reading

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.