1. Cell Biology
  2. Neuroscience
Download icon

The unfolded protein response is required for dendrite morphogenesis

  1. Xing Wei
  2. Audrey S Howell
  3. Xintong Dong
  4. Caitlin A Taylor
  5. Roshni C Cooper
  6. Jianqi Zhang
  7. Wei Zou
  8. David R Sherwood
  9. Kang Shen  Is a corresponding author
  1. Howard Hughes Medical Institute, Stanford University, United States
  2. University of Southern California, United Kingdom
  3. Duke University, United States
Research Article
  • Cited 26
  • Views 3,250
  • Annotations
Cite this article as: eLife 2015;4:e06963 doi: 10.7554/eLife.06963

Abstract

Precise patterning of dendritic fields is essential for the formation and function of neuronal circuits. During development, dendrites acquire their morphology by exuberant branching. How neurons cope with the increased load of protein production required for this rapid growth is poorly understood. Here we show that the physiological unfolded protein response (UPR) is induced in the highly branched Caenorhabditis elegans sensory neuron PVD during dendrite morphogenesis. Perturbation of the IRE1 arm of the UPR pathway causes loss of dendritic branches, a phenotype that can be rescued by overexpression of the ER chaperone HSP-4 (a homologue of mammalian BiP/ grp78). Surprisingly, a single transmembrane leucine-rich repeat (LRR) protein, DMA-1, plays a major role in the induction of the UPR and the dendritic phenotype in the UPR mutants. These findings reveal a significant role for the physiological UPR in the maintenance of ER homeostasis during morphogenesis of large dendritic arbors.

Article and author information

Author details

  1. Xing Wei

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Audrey S Howell

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Xintong Dong

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Caitlin A Taylor

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Roshni C Cooper

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Jianqi Zhang

    Division of Biostatistics, Department of Preventive Medicine, University of Southern California, Los Angeles, United Kingdom
    Competing interests
    No competing interests declared.
  7. Wei Zou

    Department of Biology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  8. David R Sherwood

    Department of Biology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  9. Kang Shen

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    For correspondence
    kangshen@stanford.edu
    Competing interests
    Kang Shen, Reviewing editor, eLife.

Reviewing Editor

  1. Graeme W Davis, University of California, San Francisco, United States

Publication history

  1. Received: February 11, 2015
  2. Accepted: June 7, 2015
  3. Accepted Manuscript published: June 8, 2015 (version 1)
  4. Version of Record published: June 29, 2015 (version 2)

Copyright

© 2015, Wei et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,250
    Page views
  • 822
    Downloads
  • 26
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Zherui Xiong et al.
    Tools and Resources Updated

    Protein interaction networks are crucial for complex cellular processes. However, the elucidation of protein interactions occurring within highly specialised cells and tissues is challenging. Here, we describe the development, and application, of a new method for proximity-dependent biotin labelling in whole zebrafish. Using a conditionally stabilised GFP-binding nanobody to target a biotin ligase to GFP-labelled proteins of interest, we show tissue-specific proteomic profiling using existing GFP-tagged transgenic zebrafish lines. We demonstrate the applicability of this approach, termed BLITZ (Biotin Labelling In Tagged Zebrafish), in diverse cell types such as neurons and vascular endothelial cells. We applied this methodology to identify interactors of caveolar coat protein, cavins, in skeletal muscle. Using this system, we defined specific interaction networks within in vivo muscle cells for the closely related but functionally distinct Cavin4 and Cavin1 proteins.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lorraine De Jesus Kim et al.
    Research Article

    The committed step of eukaryotic DNA replication occurs when the pairs of Mcm2-7 replicative helicases that license each replication origin are activated. Helicase activation requires the recruitment of Cdc45 and GINS to Mcm2-7, forming Cdc45-Mcm2-7-GINS complexes (CMGs). Using single-molecule biochemical assays to monitor CMG formation, we found that Cdc45 and GINS are recruited to loaded Mcm2-7 in two stages. Initially, Cdc45, GINS, and likely additional proteins are recruited to unstructured Mcm2-7 N-terminal tails in a Dbf4-dependent kinase (DDK)-dependent manner, forming Cdc45-tail-GINS intermediates (CtGs). DDK phosphorylation of multiple phosphorylation sites on the Mcm2‑7 tails modulates the number of CtGs formed per Mcm2-7. In a second, inefficient event, a subset of CtGs transfer their Cdc45 and GINS components to form CMGs. Importantly, higher CtG multiplicity increases the frequency of CMG formation. Our findings reveal molecular mechanisms sensitizing helicase activation to DDK levels with implications for control of replication origin efficiency and timing.