Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities

  1. Kamesh Narasimhan
  2. Samuel A Lambert
  3. Ally W H Yang
  4. Jeremy Riddell
  5. Sanie Mnaimneh
  6. Hong Zheng
  7. Mihai Albu
  8. Hamed S Najafabadi
  9. John S Reece-Hoyes
  10. Juan I Fuxman Bass
  11. Albertha J M Walhout
  12. Matthew T Weirauch
  13. Timothy R Hughes  Is a corresponding author
  1. University of Toronto, Canada
  2. University of Cincinnati, United States
  3. University of Massachusetts Medical School, United States
  4. Cincinnati Children's Hospital Medical Center, United States

Abstract

Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (~40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families, and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology, and also identifies putative regulatory roles for unstudied TFs.

Article and author information

Author details

  1. Kamesh Narasimhan

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Samuel A Lambert

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Ally W H Yang

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeremy Riddell

    Department of Molecular and Cellular Physiology, Systems Biology and Physiology Program, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sanie Mnaimneh

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Hong Zheng

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Mihai Albu

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Hamed S Najafabadi

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. John S Reece-Hoyes

    Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Juan I Fuxman Bass

    Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Albertha J M Walhout

    Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Matthew T Weirauch

    Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Timothy R Hughes

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    For correspondence
    t.hughes@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Narasimhan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,937
    views
  • 1,071
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kamesh Narasimhan
  2. Samuel A Lambert
  3. Ally W H Yang
  4. Jeremy Riddell
  5. Sanie Mnaimneh
  6. Hong Zheng
  7. Mihai Albu
  8. Hamed S Najafabadi
  9. John S Reece-Hoyes
  10. Juan I Fuxman Bass
  11. Albertha J M Walhout
  12. Matthew T Weirauch
  13. Timothy R Hughes
(2015)
Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities
eLife 4:e06967.
https://doi.org/10.7554/eLife.06967

Share this article

https://doi.org/10.7554/eLife.06967

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.