Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities

  1. Kamesh Narasimhan
  2. Samuel A Lambert
  3. Ally W H Yang
  4. Jeremy Riddell
  5. Sanie Mnaimneh
  6. Hong Zheng
  7. Mihai Albu
  8. Hamed S Najafabadi
  9. John S Reece-Hoyes
  10. Juan I Fuxman Bass
  11. Albertha J M Walhout
  12. Matthew T Weirauch
  13. Timothy R Hughes  Is a corresponding author
  1. University of Toronto, Canada
  2. University of Cincinnati, United States
  3. University of Massachusetts Medical School, United States
  4. Cincinnati Children's Hospital Medical Center, United States

Abstract

Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (~40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families, and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology, and also identifies putative regulatory roles for unstudied TFs.

Article and author information

Author details

  1. Kamesh Narasimhan

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Samuel A Lambert

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Ally W H Yang

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeremy Riddell

    Department of Molecular and Cellular Physiology, Systems Biology and Physiology Program, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sanie Mnaimneh

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Hong Zheng

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Mihai Albu

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Hamed S Najafabadi

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. John S Reece-Hoyes

    Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Juan I Fuxman Bass

    Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Albertha J M Walhout

    Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Matthew T Weirauch

    Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Timothy R Hughes

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    For correspondence
    t.hughes@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Narasimhan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,943
    views
  • 1,075
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kamesh Narasimhan
  2. Samuel A Lambert
  3. Ally W H Yang
  4. Jeremy Riddell
  5. Sanie Mnaimneh
  6. Hong Zheng
  7. Mihai Albu
  8. Hamed S Najafabadi
  9. John S Reece-Hoyes
  10. Juan I Fuxman Bass
  11. Albertha J M Walhout
  12. Matthew T Weirauch
  13. Timothy R Hughes
(2015)
Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities
eLife 4:e06967.
https://doi.org/10.7554/eLife.06967

Share this article

https://doi.org/10.7554/eLife.06967

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Pierre Barrat-Charlaix, Richard A Neher
    Research Article

    As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host’s immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. If variant growth dynamics and reshaping of host-immunity operate on comparable time scales, viral adaptation is determined by eco-evolutionary interactions that are not captured by models of rapid evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interaction between an evolving viral population in a dynamic but immunologically diverse host population. We show that depending on strain cross-immunity, heterogeneity of the host population, and durability of immune responses, escape variants initially grow exponentially, but lose their growth advantage before reaching high frequencies. Their subsequent dynamics follows an anomalous random walk determined by future escape variants and results in variant trajectories that are unpredictable. This model can explain the apparent contradiction between the clearly adaptive nature of antigenic evolution and the quasi-neutral dynamics of high-frequency variants observed for influenza viruses.

    1. Computational and Systems Biology
    2. Medicine
    Xin Zhou, Zhinuo Jenny Wang ... Blanca Rodriguez
    Research Article

    Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.