Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities

  1. Kamesh Narasimhan
  2. Samuel A Lambert
  3. Ally W H Yang
  4. Jeremy Riddell
  5. Sanie Mnaimneh
  6. Hong Zheng
  7. Mihai Albu
  8. Hamed S Najafabadi
  9. John S Reece-Hoyes
  10. Juan I Fuxman Bass
  11. Albertha J M Walhout
  12. Matthew T Weirauch
  13. Timothy R Hughes  Is a corresponding author
  1. University of Toronto, Canada
  2. University of Cincinnati, United States
  3. University of Massachusetts Medical School, United States
  4. Cincinnati Children's Hospital Medical Center, United States

Abstract

Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (~40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families, and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology, and also identifies putative regulatory roles for unstudied TFs.

Article and author information

Author details

  1. Kamesh Narasimhan

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Samuel A Lambert

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Ally W H Yang

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeremy Riddell

    Department of Molecular and Cellular Physiology, Systems Biology and Physiology Program, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sanie Mnaimneh

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Hong Zheng

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Mihai Albu

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Hamed S Najafabadi

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. John S Reece-Hoyes

    Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Juan I Fuxman Bass

    Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Albertha J M Walhout

    Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Matthew T Weirauch

    Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Timothy R Hughes

    Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    For correspondence
    t.hughes@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Nir Friedman, The Hebrew University of Jerusalem, Israel

Version history

  1. Received: February 13, 2015
  2. Accepted: April 22, 2015
  3. Accepted Manuscript published: April 23, 2015 (version 1)
  4. Version of Record published: May 18, 2015 (version 2)

Copyright

© 2015, Narasimhan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,898
    views
  • 1,056
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kamesh Narasimhan
  2. Samuel A Lambert
  3. Ally W H Yang
  4. Jeremy Riddell
  5. Sanie Mnaimneh
  6. Hong Zheng
  7. Mihai Albu
  8. Hamed S Najafabadi
  9. John S Reece-Hoyes
  10. Juan I Fuxman Bass
  11. Albertha J M Walhout
  12. Matthew T Weirauch
  13. Timothy R Hughes
(2015)
Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities
eLife 4:e06967.
https://doi.org/10.7554/eLife.06967

Share this article

https://doi.org/10.7554/eLife.06967

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.