The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO2

  1. Pierre-Louis Ruffault
  2. Fabien D'Autréaux
  3. John A Hayes
  4. Marc Nomaksteinsky
  5. Sandra Autran
  6. Tomoyuki Fujiyama
  7. Mikio Hoshino
  8. Martin Hägglund
  9. Ole Kiehn
  10. Jean-François Brunet  Is a corresponding author
  11. Gilles Fortin
  12. Christo Goridis
  1. Neuroscience Paris-Saclay Institute, France
  2. Ecole normale supérieure, France
  3. National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
  4. Karolinska Institutet, Sweden

Abstract

Maintaining constant CO2 and H+ concentrations in the arterial blood is critical for life. The principal mechanism through which this is achieved in mammals is the respiratory chemoreflex whose circuitry is still elusive. A candidate element of this circuitry is the retrotrapezoid nucleus (RTN), a collection of neurons at the ventral medullary surface that are activated by increased CO2 or low pH and project to the respiratory rhythm generator. Here, we use intersectional genetic strategies to lesion the RTN neurons defined by Atoh1 and Phox2b expression and to block or activate their synaptic output. Photostimulation of these neurons entrains the respiratory rhythm. Conversely, abrogating expression of Atoh1 or Phox2b or glutamatergic transmission in these cells curtails the phrenic nerve response to low pH in embryonic preparations and abolishes the respiratory chemoreflex in behaving animals. Thus, the RTN neurons expressing Atoh1 and Phox2b are a necessary component of the chemoreflex circuitry.

Article and author information

Author details

  1. Pierre-Louis Ruffault

    Neuroscience Paris-Saclay Institute, Gif sur Yvette, France
    Competing interests
    No competing interests declared.
  2. Fabien D'Autréaux

    Institut de Biologie de l'ENS, Ecole normale supérieure, Paris, France
    Competing interests
    No competing interests declared.
  3. John A Hayes

    Neuroscience Paris-Saclay Institute, Gif sur Yvette, France
    Competing interests
    No competing interests declared.
  4. Marc Nomaksteinsky

    Institut de Biologie de l'ENS, Ecole normale supérieure, Paris, France
    Competing interests
    No competing interests declared.
  5. Sandra Autran

    Neuroscience Paris-Saclay Institute, Gif-sur-Yvette, France
    Competing interests
    No competing interests declared.
  6. Tomoyuki Fujiyama

    Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
    Competing interests
    No competing interests declared.
  7. Mikio Hoshino

    Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
    Competing interests
    No competing interests declared.
  8. Martin Hägglund

    Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  9. Ole Kiehn

    Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    Ole Kiehn, Reviewing editor, eLife.
  10. Jean-François Brunet

    Institut de Biologie de l'ENS, Ecole normale supérieure, Paris, France
    For correspondence
    jfbrunet@biologie.ens.fr
    Competing interests
    No competing interests declared.
  11. Gilles Fortin

    Neuroscience Paris-Saclay Institute, Gif-sur-Yvette, France
    Competing interests
    No competing interests declared.
  12. Christo Goridis

    Institut de Biologie de l'ENS, Ecole normale supérieure, Paris, France
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: The protocol for this study was approved by the National Committee on the Ethics of Animal Experiments Charles Darwin (Permit Number: Ce5/2012/065).

Copyright

© 2015, Ruffault et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,107
    views
  • 673
    downloads
  • 82
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pierre-Louis Ruffault
  2. Fabien D'Autréaux
  3. John A Hayes
  4. Marc Nomaksteinsky
  5. Sandra Autran
  6. Tomoyuki Fujiyama
  7. Mikio Hoshino
  8. Martin Hägglund
  9. Ole Kiehn
  10. Jean-François Brunet
  11. Gilles Fortin
  12. Christo Goridis
(2015)
The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO2
eLife 4:e07051.
https://doi.org/10.7554/eLife.07051

Share this article

https://doi.org/10.7554/eLife.07051

Further reading

    1. Neuroscience
    Maëliss Jallais, Marco Palombo
    Research Article

    This work proposes µGUIDE: a general Bayesian framework to estimate posterior distributions of tissue microstructure parameters from any given biophysical model or signal representation, with exemplar demonstration in diffusion-weighted magnetic resonance imaging. Harnessing a new deep learning architecture for automatic signal feature selection combined with simulation-based inference and efficient sampling of the posterior distributions, µGUIDE bypasses the high computational and time cost of conventional Bayesian approaches and does not rely on acquisition constraints to define model-specific summary statistics. The obtained posterior distributions allow to highlight degeneracies present in the model definition and quantify the uncertainty and ambiguity of the estimated parameters.

    1. Computational and Systems Biology
    2. Neuroscience
    Anna Cattani, Don B Arnold ... Nancy Kopell
    Research Article

    The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3–6 Hz), high theta (~6–12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.