The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO2

  1. Pierre-Louis Ruffault
  2. Fabien D'Autréaux
  3. John A Hayes
  4. Marc Nomaksteinsky
  5. Sandra Autran
  6. Tomoyuki Fujiyama
  7. Mikio Hoshino
  8. Martin Hägglund
  9. Ole Kiehn
  10. Jean-François Brunet  Is a corresponding author
  11. Gilles Fortin
  12. Christo Goridis
  1. Neuroscience Paris-Saclay Institute, France
  2. Ecole normale supérieure, France
  3. National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
  4. Karolinska Institutet, Sweden

Abstract

Maintaining constant CO2 and H+ concentrations in the arterial blood is critical for life. The principal mechanism through which this is achieved in mammals is the respiratory chemoreflex whose circuitry is still elusive. A candidate element of this circuitry is the retrotrapezoid nucleus (RTN), a collection of neurons at the ventral medullary surface that are activated by increased CO2 or low pH and project to the respiratory rhythm generator. Here, we use intersectional genetic strategies to lesion the RTN neurons defined by Atoh1 and Phox2b expression and to block or activate their synaptic output. Photostimulation of these neurons entrains the respiratory rhythm. Conversely, abrogating expression of Atoh1 or Phox2b or glutamatergic transmission in these cells curtails the phrenic nerve response to low pH in embryonic preparations and abolishes the respiratory chemoreflex in behaving animals. Thus, the RTN neurons expressing Atoh1 and Phox2b are a necessary component of the chemoreflex circuitry.

Article and author information

Author details

  1. Pierre-Louis Ruffault

    Neuroscience Paris-Saclay Institute, Gif sur Yvette, France
    Competing interests
    No competing interests declared.
  2. Fabien D'Autréaux

    Institut de Biologie de l'ENS, Ecole normale supérieure, Paris, France
    Competing interests
    No competing interests declared.
  3. John A Hayes

    Neuroscience Paris-Saclay Institute, Gif sur Yvette, France
    Competing interests
    No competing interests declared.
  4. Marc Nomaksteinsky

    Institut de Biologie de l'ENS, Ecole normale supérieure, Paris, France
    Competing interests
    No competing interests declared.
  5. Sandra Autran

    Neuroscience Paris-Saclay Institute, Gif-sur-Yvette, France
    Competing interests
    No competing interests declared.
  6. Tomoyuki Fujiyama

    Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
    Competing interests
    No competing interests declared.
  7. Mikio Hoshino

    Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
    Competing interests
    No competing interests declared.
  8. Martin Hägglund

    Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  9. Ole Kiehn

    Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    Ole Kiehn, Reviewing editor, eLife.
  10. Jean-François Brunet

    Institut de Biologie de l'ENS, Ecole normale supérieure, Paris, France
    For correspondence
    jfbrunet@biologie.ens.fr
    Competing interests
    No competing interests declared.
  11. Gilles Fortin

    Neuroscience Paris-Saclay Institute, Gif-sur-Yvette, France
    Competing interests
    No competing interests declared.
  12. Christo Goridis

    Institut de Biologie de l'ENS, Ecole normale supérieure, Paris, France
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: The protocol for this study was approved by the National Committee on the Ethics of Animal Experiments Charles Darwin (Permit Number: Ce5/2012/065).

Copyright

© 2015, Ruffault et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.07051

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.