Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing

  1. Raphaël Etournay
  2. Marko Popović
  3. Matthias Merkel
  4. Amitabha Nandi
  5. Corinna Blasse
  6. Benoît Aigouy
  7. Holger Brandl
  8. Gene Myers
  9. Guillaume Salbreux
  10. Frank Jülicher
  11. Suzanne Eaton  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. Max Planck Institute for the Physics of Complex Systems, Germany
  3. Institut de Biologie du Développement de Marseille, France

Abstract

How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively account for this wing-blade shape change on the basis of cell divisions, cell rearrangements and cell shape changes. We show that cells both generate and respond to epithelial stresses during this process, and that the nature of this interplay specifies the pattern of junctional network remodeling that changes wing shape. We show that patterned constrains exerted on the tissue by the extracellular matrix are key to force the tissue into the right shape. We present a continuum mechanical model that quantitatively describes the relationship between epithelial stresses and cell dynamics, and how their interplay reshapes the wing.

Article and author information

Author details

  1. Raphaël Etournay

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  2. Marko Popović

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
  3. Matthias Merkel

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
  4. Amitabha Nandi

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
  5. Corinna Blasse

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  6. Benoît Aigouy

    Institut de Biologie du Développement de Marseille, Marseille, France
    Competing interests
    No competing interests declared.
  7. Holger Brandl

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  8. Gene Myers

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  9. Guillaume Salbreux

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
  10. Frank Jülicher

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    Frank Jülicher, Reviewing editor, eLife.
  11. Suzanne Eaton

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    eaton@mpi-cbg.de
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Helen McNeill, The Samuel Lunenfeld Research Institute, Canada

Version history

  1. Received: February 24, 2015
  2. Accepted: June 18, 2015
  3. Accepted Manuscript published: June 23, 2015 (version 1)
  4. Version of Record published: September 22, 2015 (version 2)

Copyright

© 2015, Etournay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,648
    views
  • 2,405
    downloads
  • 299
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Raphaël Etournay
  2. Marko Popović
  3. Matthias Merkel
  4. Amitabha Nandi
  5. Corinna Blasse
  6. Benoît Aigouy
  7. Holger Brandl
  8. Gene Myers
  9. Guillaume Salbreux
  10. Frank Jülicher
  11. Suzanne Eaton
(2015)
Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing
eLife 4:e07090.
https://doi.org/10.7554/eLife.07090

Share this article

https://doi.org/10.7554/eLife.07090

Further reading

    1. Cell Biology
    Zhongyun Xie, Yongping Chai ... Wei Li
    Research Article

    Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+–adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD’s asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.