A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics

  1. Irene Gallego Romero  Is a corresponding author
  2. Bryan J Pavlovic
  3. Irene Hernando-Herraez
  4. Xiang Zhou
  5. Michelle C Ward
  6. Nicholas E Banovich
  7. Courtney L Kagan
  8. Jonathan E Burnett
  9. Constance H Huang
  10. Amy Mitrano
  11. Claudia I Chavarria
  12. Inbar Friedrich Ben-Nun
  13. Yingchun Li
  14. Karen Sabatini
  15. Trevor R Leonardo
  16. Mana Parast
  17. Tomas Marques-Bonet
  18. Louise C Laurent
  19. Jeanne F Loring
  20. Yoav Gilad
  1. University of Chicago, United States
  2. Institució Catalana de Recerca i Estudis Avançats, Spain
  3. University of Michigan, United States
  4. Lonza Walkersville, Inc., United States
  5. University of California San Diego, United States
  6. The Scripps Research Institute, United States
  7. Sanford Consortium for Regenerative Medicine, United States

Abstract

Comparative genomics studies in primates are restricted due to our limited access to samples. In order to gain better insight into the genetic processes that underlie variation in complex phenotypes in primates, we must have access to faithful model systems for a wide range of cell types. To facilitate this, we generated a panel of 7 fully characterized chimpanzee induced pluripotent stem cell (iPSC) lines derived from healthy donors. To demonstrate the utility of comparative iPSC panels, we collected RNA-sequencing and DNA methylation data from the chimpanzee iPSCs and the corresponding fibroblast lines, as well as from 7 human iPSCs and their source lines, which encompass multiple populations and cell types. We observe much less within-species variation in iPSCs than in somatic cells, indicating the reprogramming process erases many inter-individual differences. The low within-species regulatory variation in iPSCs allowed us to identify many novel inter-species regulatory differences of small magnitude.

Article and author information

Author details

  1. Irene Gallego Romero

    Department of Human Genetics, University of Chicago, Chicago, United States
    For correspondence
    ireneg@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Bryan J Pavlovic

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Irene Hernando-Herraez

    Institute of Evolutionary Biology, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiang Zhou

    Department of Biostatistics, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michelle C Ward

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nicholas E Banovich

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Courtney L Kagan

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jonathan E Burnett

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Constance H Huang

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Amy Mitrano

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Claudia I Chavarria

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Inbar Friedrich Ben-Nun

    n/a, Lonza Walkersville, Inc., Walkersville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Yingchun Li

    Department of Pathology, University of California San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Karen Sabatini

    Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Trevor R Leonardo

    Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Mana Parast

    Department of Pathology, University of California San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Tomas Marques-Bonet

    Institute of Evolutionary Biology, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  18. Louise C Laurent

    n/a, Sanford Consortium for Regenerative Medicine, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Jeanne F Loring

    Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Yoav Gilad

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Duncan T Odom, Cancer Research UK Cambridge Institute, United Kingdom

Version history

  1. Received: February 19, 2015
  2. Accepted: June 22, 2015
  3. Accepted Manuscript published: June 23, 2015 (version 1)
  4. Version of Record published: July 15, 2015 (version 2)

Copyright

© 2015, Gallego Romero et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,955
    views
  • 807
    downloads
  • 106
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Irene Gallego Romero
  2. Bryan J Pavlovic
  3. Irene Hernando-Herraez
  4. Xiang Zhou
  5. Michelle C Ward
  6. Nicholas E Banovich
  7. Courtney L Kagan
  8. Jonathan E Burnett
  9. Constance H Huang
  10. Amy Mitrano
  11. Claudia I Chavarria
  12. Inbar Friedrich Ben-Nun
  13. Yingchun Li
  14. Karen Sabatini
  15. Trevor R Leonardo
  16. Mana Parast
  17. Tomas Marques-Bonet
  18. Louise C Laurent
  19. Jeanne F Loring
  20. Yoav Gilad
(2015)
A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics
eLife 4:e07103.
https://doi.org/10.7554/eLife.07103

Share this article

https://doi.org/10.7554/eLife.07103

Further reading

    1. Stem Cells and Regenerative Medicine
    Sangeetha Kandoi, Cassandra Martinez ... Deepak A Lamba
    Research Article

    Retinitis pigmentosa (RP), a heterogenous group of inherited retinal disorder, causes slow progressive vision loss with no effective treatments available. Mutations in the rhodopsin gene (RHO) account for ~25% cases of autosomal dominant RP (adRP). In this study, we describe the disease characteristics of the first-ever reported mono-allelic copy number variation (CNV) in RHO as a novel cause of adRP. We (a) show advanced retinal degeneration in a male patient (68 years of age) harboring four transcriptionally active intact copies of rhodopsin, (b) recapitulated the clinical phenotypes using retinal organoids, and (c) assessed the utilization of a small molecule, Photoregulin3 (PR3), as a clinically viable strategy to target and modify disease progression in RP patients associated with RHO-CNV. Patient retinal organoids showed photoreceptors dysgenesis, with rod photoreceptors displaying stunted outer segments with occasional elongated cilia-like projections (microscopy); increased RHO mRNA expression (quantitative real-time PCR [qRT-PCR] and bulk RNA sequencing); and elevated levels and mislocalization of rhodopsin protein (RHO) within the cell body of rod photoreceptors (western blotting and immunohistochemistry) over the extended (300 days) culture time period when compared against control organoids. Lastly, we utilized PR3 to target NR2E3, an upstream regulator of RHO, to alter RHO expression and observed a partial rescue of RHO protein localization from the cell body to the inner/outer segments of rod photoreceptors in patient organoids. These results provide a proof-of-principle for personalized medicine and suggest that RHO expression requires precise control. Taken together, this study supports the clinical data indicating that RHO-CNV associated adRPdevelops as a result of protein overexpression, thereby overloading the photoreceptor post-translational modification machinery.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Junjun Yao, Shaoxing Dai ... Tianqing Li
    Research Article

    While accumulated publications support the existence of neurogenesis in the adult human hippocampus, the homeostasis and developmental potentials of neural stem cells (NSCs) under different contexts remain unclear. Based on our generated single-nucleus atlas of the human hippocampus across neonatal, adult, aging, and injury, we dissected the molecular heterogeneity and transcriptional dynamics of human hippocampal NSCs under different contexts. We further identified new specific neurogenic lineage markers that overcome the lack of specificity found in some well-known markers. Based on developmental trajectory and molecular signatures, we found that a subset of NSCs exhibit quiescent properties after birth, and most NSCs become deep quiescence during aging. Furthermore, certain deep quiescent NSCs are reactivated following stroke injury. Together, our findings provide valuable insights into the development, aging, and reactivation of the human hippocampal NSCs, and help to explain why adult hippocampal neurogenesis is infrequently observed in humans.