Malaria-associated atypical memory B cells exhibit markedly reduced B cell receptor signaling and effector function

Abstract

Protective antibodies in Plasmodium falciparum malaria are only acquired after years of repeated infections. Chronic malaria exposure is associated with a large increase in atypical memory B cells (MBCs) that resemble B cells expanded in a variety of persistent viral infections. Understanding the function of atypical MBCs and their relationship to classical MBCs will be critical to developing effective vaccines for malaria and other chronic infections. We show that VH gene repertoires and somatic hypermutation rates of atypical and classical MBCs are indistinguishable indicating a common developmental history. Atypical MBCs express an array of inhibitory receptors and B cell receptor (BCR) signaling is stunted in atypical MBCs resulting in impaired B cell responses including proliferation, cytokine production and antibody secretion. Thus, in response to chronic malaria exposure, atypical MBCs appear to differentiate from classical MBCs becoming refractory to BCR-mediated activation and potentially interfering with the acquisition of malaria immunity.

Article and author information

Author details

  1. Silvia Portugal

    Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher M Tipton

    Departments of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Haewon Sohn

    Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Younoussou Kone

    Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
    Competing interests
    The authors declare that no competing interests exist.
  5. Jing Wang

    Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shanping Li

    Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jeff Skinner

    Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kimmo Virtaneva

    Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Daniel E Sturdevant

    Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Stephen F Porcella

    Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ogobara K Doumbo

    Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
    Competing interests
    The authors declare that no competing interests exist.
  12. Safiatou Doumbo

    Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
    Competing interests
    The authors declare that no competing interests exist.
  13. Kassoum Kayentao

    Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
    Competing interests
    The authors declare that no competing interests exist.
  14. Aissata Ongoiba

    Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
    Competing interests
    The authors declare that no competing interests exist.
  15. Boubacar Traore

    Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
    Competing interests
    The authors declare that no competing interests exist.
  16. Inaki Sanz

    Departments of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Susan K Pierce

    Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Peter D Crompton

    Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
    For correspondence
    pcrompton@niaid.nih.gov
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Urszula Krzych, Walter Reed Army Institute of Research, United States

Ethics

Human subjects: The Ethics Committee of the Faculty of Medicine, Pharmacy, and Dentistry at the University of Sciences, Techniques, and Technologies of Bamako, and the Institutional Review Board of the National Institute of Allergy and Infectious Diseases, National Institutes of Health approved this study. Written informed consent and consent to publish was received from participants prior to inclusion in the study. Written informed consent and consent to publish was obtained from parents or guardians of participating children prior to inclusion in the study. NIAID IRB protocols 07-I-N141 or 06-I-N147.

Version history

  1. Received: February 27, 2015
  2. Accepted: May 6, 2015
  3. Accepted Manuscript published: May 8, 2015 (version 1)
  4. Version of Record published: May 27, 2015 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 6,226
    views
  • 1,458
    downloads
  • 238
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Silvia Portugal
  2. Christopher M Tipton
  3. Haewon Sohn
  4. Younoussou Kone
  5. Jing Wang
  6. Shanping Li
  7. Jeff Skinner
  8. Kimmo Virtaneva
  9. Daniel E Sturdevant
  10. Stephen F Porcella
  11. Ogobara K Doumbo
  12. Safiatou Doumbo
  13. Kassoum Kayentao
  14. Aissata Ongoiba
  15. Boubacar Traore
  16. Inaki Sanz
  17. Susan K Pierce
  18. Peter D Crompton
(2015)
Malaria-associated atypical memory B cells exhibit markedly reduced B cell receptor signaling and effector function
eLife 4:e07218.
https://doi.org/10.7554/eLife.07218

Share this article

https://doi.org/10.7554/eLife.07218

Further reading

    1. Immunology and Inflammation
    Harshavardhan Lingegowda, Katherine B Zutautas ... Chandrakant Tayade
    Research Article

    Endometriosis (EM), characterized by the presence of endometrial-like tissue outside the uterus, is the leading cause of chronic pelvic pain and infertility in females of reproductive age. Despite its high prevalence, the molecular mechanisms underlying EM pathogenesis remain poorly understood. The endocannabinoid system (ECS) is known to influence several cardinal features of this complex disease including pain, vascularization, and overall lesion survival, but the exact mechanisms are not known. Utilizing CNR1 knockout (k/o), CNR2 k/o, and wild-type (WT) mouse models of EM, we reveal contributions of ECS and these receptors in disease initiation, progression, and immune modulation. Particularly, we identified EM-specific T cell dysfunction in the CNR2 k/o mouse model of EM. We also demonstrate the impact of decidualization-induced changes on ECS components, and the unique disease-associated transcriptional landscape of ECS components in EM. Imaging mass cytometry (IMC) analysis revealed distinct features of the microenvironment between CNR1, CNR2, and WT genotypes in the presence or absence of decidualization. This study, for the first time, provides an in-depth analysis of the involvement of the ECS in EM pathogenesis and lays the foundation for the development of novel therapeutic interventions to alleviate the burden of this debilitating condition.

    1. Immunology and Inflammation
    2. Neuroscience
    Nicolas Aubert, Madeleine Purcarea ... Gilles Marodon
    Research Article

    CD4+CD25+Foxp3+ regulatory T cells (Treg) have been implicated in pain modulation in various inflammatory conditions. However, whether Treg cells hamper pain at steady state and by which mechanism is still unclear. From a meta-analysis of the transcriptomes of murine Treg and conventional T cells (Tconv), we observe that the proenkephalin gene (Penk), encoding the precursor of analgesic opioid peptides, ranks among the top 25 genes most enriched in Treg cells. We then present various evidence suggesting that Penk is regulated in part by members of the Tumor Necrosis Factor Receptor (TNFR) family and the transcription factor Basic leucine zipper transcription faatf-like (BATF). Using mice in which the promoter activity of Penk can be tracked with a fluorescent reporter, we also show that Penk expression is mostly detected in Treg and activated Tconv in non-inflammatory conditions in the colon and skin. Functionally, Treg cells proficient or deficient for Penk suppress equally well the proliferation of effector T cells in vitro and autoimmune colitis in vivo. In contrast, inducible ablation of Penk in Treg leads to heat hyperalgesia in both male and female mice. Overall, our results indicate that Treg might play a key role at modulating basal somatic sensitivity in mice through the production of analgesic opioid peptides.