The homo-oligomerisation of both Sas-6 and Ana2 is required for efficient centriole assembly in flies

  1. Matthew A Cottee
  2. Nadine Muschalik
  3. Steven Johnson
  4. Joanna Leveson
  5. Jordan W Raff  Is a corresponding author
  6. Susan M Lea
  1. University of Oxford, United Kingdom
  2. MRC-Laboratory of Molecular Biology, United Kingdom

Abstract

Sas-6 and Ana2/STIL proteins are required for centriole duplication and the homo-oligomerisation properties of Sas-6 help establish the nine-fold symmetry of the central cartwheel that initiates centriole assembly. Ana2/STIL proteins are poorly conserved, but they all contain a predicted Central Coiled-Coil Domain (CCCD). Here we show that the Drosophila Ana2 CCCD forms a tetramer, and we solve its structure to 0.8 Å, revealing that it adopts an unusual parallel-coil topology. We also solve the structure of the Drosophila Sas-6 N-terminal domain to 2.9 Å revealing that it forms higher-order oligomers through canonical interactions. Point mutations that perturb Sas-6 or Ana2 homo-oligomerisation in vitro strongly perturb centriole assembly in vivo. Thus, efficient centriole duplication in flies requires the homo-oligomerisation of both Sas-6 and Ana2, and the Ana2 CCCD tetramer structure provides important information on how these proteins might cooperate to form a cartwheel structure.

Article and author information

Author details

  1. Matthew A Cottee

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Nadine Muschalik

    Division of Cell Biology, MRC-Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Steven Johnson

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Joanna Leveson

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Jordan W Raff

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    For correspondence
    jordan.raff@path.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  6. Susan M Lea

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Cottee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,341
    views
  • 587
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew A Cottee
  2. Nadine Muschalik
  3. Steven Johnson
  4. Joanna Leveson
  5. Jordan W Raff
  6. Susan M Lea
(2015)
The homo-oligomerisation of both Sas-6 and Ana2 is required for efficient centriole assembly in flies
eLife 4:e07236.
https://doi.org/10.7554/eLife.07236

Share this article

https://doi.org/10.7554/eLife.07236

Further reading

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.