The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation

  1. Kacper B Rogala
  2. Nicola J Dynes
  3. Georgios N Hatzopoulos
  4. Jun Yan
  5. Sheng Kai Pong
  6. Carol V Robinson
  7. Charlotte M Deane
  8. Pierre Gönczy
  9. Ioannis Vakonakis  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Swiss Federal Institute of Technology, Switzerland

Abstract

Centrioles are microtubule-based organelles crucial for cell division, sensing and motility. In C. elegans, the onset of centriole formation requires notably the proteins SAS-5 and SAS-6, which have functional homologs across eukaryotic evolution. Whereas the molecular architecture of SAS-6 and its role in initiating centriole formation are well understood, the mechanisms by which SAS-5 and its relatives function is unclear. Here, we combine biophysical and structural analysis to uncover the architecture of SAS-5 and examine its functional implications in vivo. Our work reveals that two distinct self-associating domains are necessary to form higher-order oligomers of SAS-5: a trimeric coiled coil and a novel globular dimeric Implico domain. Disruption of either domain leads to centriole duplication failure in worm embryos, indicating that large SAS-5 assemblies are necessary for function in vivo.

Article and author information

Author details

  1. Kacper B Rogala

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Nicola J Dynes

    Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Georgios N Hatzopoulos

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Jun Yan

    Department of Chemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Sheng Kai Pong

    Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Carol V Robinson

    Department of Chemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Charlotte M Deane

    Department of Statistics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Pierre Gönczy

    Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Ioannis Vakonakis

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    For correspondence
    ioannis.vakonakis@bioch.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Anthony A Hyman, Max Planck Institute of Molecular Cell Biology and Genetics, Germany

Publication history

  1. Received: March 10, 2015
  2. Accepted: May 28, 2015
  3. Accepted Manuscript published: May 29, 2015 (version 1)
  4. Version of Record published: June 18, 2015 (version 2)

Copyright

© 2015, Rogala et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,130
    Page views
  • 509
    Downloads
  • 30
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kacper B Rogala
  2. Nicola J Dynes
  3. Georgios N Hatzopoulos
  4. Jun Yan
  5. Sheng Kai Pong
  6. Carol V Robinson
  7. Charlotte M Deane
  8. Pierre Gönczy
  9. Ioannis Vakonakis
(2015)
The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation
eLife 4:e07410.
https://doi.org/10.7554/eLife.07410

Further reading

    1. Structural Biology and Molecular Biophysics
    Eshwar R Tammineni, Lourdes Figueroa ... Eduardo Rios
    Research Article

    Calcium ion movements between cellular stores and the cytosol govern muscle contraction, the most energy-consuming function in mammals, which confers skeletal myofibers a pivotal role in glycemia regulation. Chronic myoplasmic calcium elevation (“calcium stress”), found in malignant hyperthermia-susceptible (MHS) patients and multiple myopathies, has been suggested to underlie the progression from hyperglycemia to insulin resistance. What drives such progression remains elusive. We find that muscle cells derived from MHS patients have increased content of an activated fragment of GSK3β — a specialized kinase that inhibits glycogen synthase, impairing glucose utilization and delineating a path to hyperglycemia. We also find decreased content of junctophilin1, an essential structural protein that colocalizes in the couplon with the voltage-sensing CaV1.1, the calcium channel RyR1 and calpain1, accompanied by an increase in a 44 kDa junctophilin1 fragment (JPh44) that moves into nuclei. We trace these changes to activated proteolysis by calpain1, secondary to increased myoplasmic calcium. We demonstrate that a JPh44-like construct induces transcriptional changes predictive of increased glucose utilization in myoblasts, including less transcription and translation of GSK3β and decreased transcription of proteins that reduce utilization of glucose. These effects reveal a stress-adaptive response, mediated by the novel regulator of transcription JPh44.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Janice M Reimer, Morgan E DeSantis ... Andres E Leschziner
    Research Advance Updated

    The lissencephaly 1 protein, LIS1, is mutated in type-1 lissencephaly and is a key regulator of cytoplasmic dynein-1. At a molecular level, current models propose that LIS1 activates dynein by relieving its autoinhibited form. Previously we reported a 3.1 Å structure of yeast dynein bound to Pac1, the yeast homologue of LIS1, which revealed the details of their interactions (Gillies et al., 2022). Based on this structure, we made mutations that disrupted these interactions and showed that they were required for dynein’s function in vivo in yeast. We also used our yeast dynein-Pac1 structure to design mutations in human dynein to probe the role of LIS1 in promoting the assembly of active dynein complexes. These mutations had relatively mild effects on dynein activation, suggesting that there may be differences in how dynein and Pac1/LIS1 interact between yeast and humans. Here, we report cryo-EM structures of human dynein-LIS1 complexes. Our new structures reveal the differences between the yeast and human systems, provide a blueprint to disrupt the human dynein-LIS1 interactions more accurately, and map type-1 lissencephaly disease mutations, as well as mutations in dynein linked to malformations of cortical development/intellectual disability, in the context of the dynein-LIS1 complex.