Stochastic modelling, Bayesian inference, and new in vivomeasurements elucidate the debated mtDNA bottleneck mechanism

  1. Iain G Johnston
  2. Joerg P Burgstaller
  3. Vitezslav Havlicek
  4. Thomas Kolbe
  5. Thomas Rülicke
  6. Gottfried Brem
  7. Jo Poulton
  8. Nick S Jones  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. IFA Tulln, Austria
  3. University of Veterinary Medicine, Austria
  4. University of Veterinary Medicine Vienna, Austria
  5. University of Oxford, United Kingdom

Abstract

Dangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during mammalian development through a highly debated mechanism called the mtDNA bottleneck. Uncertaintysurrounding this process limits our ability to address inherited mtDNA diseases. We produce a new, physically motivated, generalisable theoretical model for mtDNA populations during development, allowing the first statistical comparison of proposed bottleneck mechanisms. Using approximate Bayesian computation and mouse data, we find most statistical support for a combination of binomial partitioning of mtDNAs at cell divisions and random mtDNAturnover, meaning that the debated exact magnitude of mtDNAcopy number depletion is flexible. New experimental measurements from a wild-derived mtDNA pairing in mice confirm the theoretical predictions of this model. Weanalytically solve a mathematical description of thismechanism, computing probabilities of mtDNA disease onset,efficacy of clinical sampling strategies, and effects of potential dynamic interventions, thus developing aquantitative and experimentally-supported stochastic theoryof the bottleneck.

Article and author information

Author details

  1. Iain G Johnston

    Department of Mathematics, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Joerg P Burgstaller

    Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, IFA Tulln, Tulln, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Vitezslav Havlicek

    Reproduction Centre Wieselburg, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Kolbe

    Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Rülicke

    Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Gottfried Brem

    Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, Tulln, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Jo Poulton

    Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Nick S Jones

    Department of Mathematics, Imperial College London, London, United Kingdom
    For correspondence
    nick.jones@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: The study was discussed and approved by the institutional ethics committee in accordance with Good Scientific Practice (GSP) guidelines and national legislation. FELASA recommendations for the health monitoring of SPF mice were followed. Approved by the institutional ethics committee and the national authority according to Section 26 of the Law for Animal Experiments, Tierversuchsgesetz 2012 - TVG 2012.

Copyright

© 2015, Johnston et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,045
    views
  • 675
    downloads
  • 82
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Iain G Johnston
  2. Joerg P Burgstaller
  3. Vitezslav Havlicek
  4. Thomas Kolbe
  5. Thomas Rülicke
  6. Gottfried Brem
  7. Jo Poulton
  8. Nick S Jones
(2015)
Stochastic modelling, Bayesian inference, and new in vivomeasurements elucidate the debated mtDNA bottleneck mechanism
eLife 4:e07464.
https://doi.org/10.7554/eLife.07464

Share this article

https://doi.org/10.7554/eLife.07464

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Ruihan Dong, Rongrong Liu ... Cheng Zhu
    Research Article

    Antimicrobial peptides (AMPs) are attractive candidates to combat antibiotic resistance for their capability to target biomembranes and restrict a wide range of pathogens. It is a daunting challenge to discover novel AMPs due to their sparse distributions in a vast peptide universe, especially for peptides that demonstrate potencies for both bacterial membranes and viral envelopes. Here, we establish a de novo AMP design framework by bridging a deep generative module and a graph-encoding activity regressor. The generative module learns hidden ‘grammars’ of AMP features and produces candidates sequentially pass antimicrobial predictor and antiviral classifiers. We discovered 16 bifunctional AMPs and experimentally validated their abilities to inhibit a spectrum of pathogens in vitro and in animal models. Notably, P076 is a highly potent bactericide with the minimal inhibitory concentration of 0.21 μM against multidrug-resistant Acinetobacter baumannii, while P002 broadly inhibits five enveloped viruses. Our study provides feasible means to uncover the sequences that simultaneously encode antimicrobial and antiviral activities, thus bolstering the function spectra of AMPs to combat a wide range of drug-resistant infections.

    1. Computational and Systems Biology
    2. Neuroscience
    Gabriel Loewinger, Erjia Cui ... Francisco Pereira
    Tools and Resources

    Fiber photometry has become a popular technique to measure neural activity in vivo, but common analysis strategies can reduce the detection of effects because they condense within-trial signals into summary measures, and discard trial-level information by averaging across-trials. We propose a novel photometry statistical framework based on functional linear mixed modeling, which enables hypothesis testing of variable effects at every trial time-point, and uses trial-level signals without averaging. This makes it possible to compare the timing and magnitude of signals across conditions while accounting for between-animal differences. Our framework produces a series of plots that illustrate covariate effect estimates and statistical significance at each trial time-point. By exploiting signal autocorrelation, our methodology yields joint 95% confidence intervals that account for inspecting effects across the entire trial and improve the detection of event-related signal changes over common multiple comparisons correction strategies. We reanalyze data from a recent study proposing a theory for the role of mesolimbic dopamine in reward learning, and show the capability of our framework to reveal significant effects obscured by standard analysis approaches. For example, our method identifies two dopamine components with distinct temporal dynamics in response to reward delivery. In simulation experiments, our methodology yields improved statistical power over common analysis approaches. Finally, we provide an open-source package and analysis guide for applying our framework.