Stochastic modelling, Bayesian inference, and new in vivomeasurements elucidate the debated mtDNA bottleneck mechanism

  1. Iain G Johnston
  2. Joerg P Burgstaller
  3. Vitezslav Havlicek
  4. Thomas Kolbe
  5. Thomas Rülicke
  6. Gottfried Brem
  7. Jo Poulton
  8. Nick S Jones  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. IFA Tulln, Austria
  3. University of Veterinary Medicine, Austria
  4. University of Veterinary Medicine Vienna, Austria
  5. University of Oxford, United Kingdom

Abstract

Dangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during mammalian development through a highly debated mechanism called the mtDNA bottleneck. Uncertaintysurrounding this process limits our ability to address inherited mtDNA diseases. We produce a new, physically motivated, generalisable theoretical model for mtDNA populations during development, allowing the first statistical comparison of proposed bottleneck mechanisms. Using approximate Bayesian computation and mouse data, we find most statistical support for a combination of binomial partitioning of mtDNAs at cell divisions and random mtDNAturnover, meaning that the debated exact magnitude of mtDNAcopy number depletion is flexible. New experimental measurements from a wild-derived mtDNA pairing in mice confirm the theoretical predictions of this model. Weanalytically solve a mathematical description of thismechanism, computing probabilities of mtDNA disease onset,efficacy of clinical sampling strategies, and effects of potential dynamic interventions, thus developing aquantitative and experimentally-supported stochastic theoryof the bottleneck.

Article and author information

Author details

  1. Iain G Johnston

    Department of Mathematics, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Joerg P Burgstaller

    Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, IFA Tulln, Tulln, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Vitezslav Havlicek

    Reproduction Centre Wieselburg, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Kolbe

    Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Rülicke

    Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Gottfried Brem

    Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, Tulln, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Jo Poulton

    Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Nick S Jones

    Department of Mathematics, Imperial College London, London, United Kingdom
    For correspondence
    nick.jones@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: The study was discussed and approved by the institutional ethics committee in accordance with Good Scientific Practice (GSP) guidelines and national legislation. FELASA recommendations for the health monitoring of SPF mice were followed. Approved by the institutional ethics committee and the national authority according to Section 26 of the Law for Animal Experiments, Tierversuchsgesetz 2012 - TVG 2012.

Copyright

© 2015, Johnston et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,048
    views
  • 676
    downloads
  • 82
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.07464

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.