Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism

  1. Iain G Johnston
  2. Joerg P Burgstaller
  3. Vitezslav Havlicek
  4. Thomas Kolbe
  5. Thomas Rülicke
  6. Gottfried Brem
  7. Jo Poulton
  8. Nick S Jones  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. IFA Tulln, Austria
  3. University of Veterinary Medicine, Austria
  4. University of Veterinary Medicine Vienna, Austria
  5. University of Oxford, United Kingdom

Abstract

Dangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during mammalian development through a highly debated mechanism called the mtDNA bottleneck. Uncertainty surrounding this process limits our ability to address inherited mtDNA diseases. We produce a new, physically motivated, generalisable theoretical model for mtDNA populations during development, allowing the first statistical comparison of proposed bottleneck mechanisms. Using approximate Bayesian computation and mouse data, we find most statistical support for a combination of binomial partitioning of mtDNAs at cell divisions and random mtDNA turnover, meaning that the debated exact magnitude of mtDNA copy number depletion is flexible. New experimental measurements from a wild-derived mtDNA pairing in mice confirm the theoretical predictions of this model. We analytically solve a mathematical description of this mechanism, computing probabilities of mtDNA disease onset, efficacy of clinical sampling strategies, and effects of potential dynamic interventions, thus developing a quantitative and experimentally-supported stochastic theory of the bottleneck.

Article and author information

Author details

  1. Iain G Johnston

    Department of Mathematics, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Joerg P Burgstaller

    Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, IFA Tulln, Tulln, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Vitezslav Havlicek

    Reproduction Centre Wieselburg, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Kolbe

    Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Rülicke

    Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Gottfried Brem

    Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, Tulln, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Jo Poulton

    Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Nick S Jones

    Department of Mathematics, Imperial College London, London, United Kingdom
    For correspondence
    nick.jones@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: The study was discussed and approved by the institutional ethics committee in accordance with Good Scientific Practice (GSP) guidelines and national legislation. FELASA recommendations for the health monitoring of SPF mice were followed. Approved by the institutional ethics committee and the national authority according to Section 26 of the Law for Animal Experiments, Tierversuchsgesetz 2012 - TVG 2012.

Copyright

© 2015, Johnston et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,041
    views
  • 668
    downloads
  • 82
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Iain G Johnston
  2. Joerg P Burgstaller
  3. Vitezslav Havlicek
  4. Thomas Kolbe
  5. Thomas Rülicke
  6. Gottfried Brem
  7. Jo Poulton
  8. Nick S Jones
(2015)
Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism
eLife 4:e07464.
https://doi.org/10.7554/eLife.07464

Share this article

https://doi.org/10.7554/eLife.07464

Further reading

    1. Computational and Systems Biology
    Dylan C Sarver, Muzna Saqib ... G William Wong
    Research Article

    Organ function declines with age, and large-scale transcriptomic analyses have highlighted differential aging trajectories across tissues. The mechanism underlying shared and organ-selective functional changes across the lifespan, however, still remains poorly understood. Given the central role of mitochondria in powering cellular processes needed to maintain tissue health, we therefore undertook a systematic assessment of respiratory activity across 33 different tissues in young (2.5 months) and old (20 months) mice of both sexes. Our high-resolution mitochondrial respiration atlas reveals: (1) within any group of mice, mitochondrial activity varies widely across tissues, with the highest values consistently seen in heart, brown fat, and kidney; (2) biological sex is a significant but minor contributor to mitochondrial respiration, and its contributions are tissue-specific, with major differences seen in the pancreas, stomach, and white adipose tissue; (3) age is a dominant factor affecting mitochondrial activity, especially across most brain regions, different fat depots, skeletal muscle groups, eyes, and different regions of the gastrointestinal tract; (4) age effects can be sex- and tissue-specific, with some of the largest effects seen in pancreas, heart, adipose tissue, and skeletal muscle; and (5) while aging alters the functional trajectories of mitochondria in a majority of tissues, some are remarkably resilient to age-induced changes. Altogether, our data provide the most comprehensive compendium of mitochondrial respiration and illuminate functional signatures of aging across diverse tissues and organ systems.

    1. Computational and Systems Biology
    Rob Bierman, Jui M Dave ... Julia Salzman
    Research Article

    Targeted low-throughput studies have previously identified subcellular RNA localization as necessary for cellular functions including polarization, and translocation. Furthermore, these studies link localization to RNA isoform expression, especially 3’ Untranslated Region (UTR) regulation. The recent introduction of genome-wide spatial transcriptomics techniques enables the potential to test if subcellular localization is regulated in situ pervasively. In order to do this, robust statistical measures of subcellular localization and alternative poly-adenylation (APA) at single-cell resolution are needed. Developing a new statistical framework called SPRAWL, we detect extensive cell-type specific subcellular RNA localization regulation in the mouse brain and to a lesser extent mouse liver. We integrated SPRAWL with a new approach to measure cell-type specific regulation of alternative 3’ UTR processing and detected examples of significant correlations between 3’ UTR length and subcellular localization. Included examples, Timp3, Slc32a1, Cxcl14, and Nxph1 have subcellular localization in the mouse brain highly correlated with regulated 3’ UTR processing that includes the use of unannotated, but highly conserved, 3’ ends. Together, SPRAWL provides a statistical framework to integrate multi-omic single-cell resolved measurements of gene-isoform pairs to prioritize an otherwise impossibly large list of candidate functional 3’ UTRs for functional prediction and study. In these studies of data from mice, SPRAWL predicts that 3’ UTR regulation of subcellular localization may be more pervasive than currently known.