Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication

  1. Andrew Kodani
  2. Timothy W Yu
  3. Jeffrey R Johnson
  4. Divya Jayaraman
  5. Tasha L Johnson
  6. Lihadh Al-Gazali
  7. Lāszló Sztriha
  8. Jennifer N Partlow
  9. Hanjun Kim
  10. Alexis L Krup
  11. Alexander Dammermann
  12. Nevan Krogan
  13. Christopher A Walsh
  14. Jeremy F Reiter  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Howard Hughes Medical Institute, Boston Children's Hospital, United States
  3. United Arab Emirates University, United Arab Emirates
  4. University of Vienna, Austria
  5. Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States

Abstract

Primary microcephaly (MCPH) associated proteins CDK5RAP2, CEP152, WDR62 and CEP63 colocalize at the centrosome. We found that they interact to promote centriole duplication and form a hierarchy in which each is required to localize another to the centrosome, with CDK5RAP2 at the apex, and CEP152, WDR62 and CEP63 at sequentially lower positions. MCPH proteins interact with distinct centriolar satellite proteins; CDK5RAP2 interacts with SPAG5 and CEP72, CEP152 with CEP131, WDR62 with MOONRAKER, and CEP63 with CEP90 and CCDC14. These satellite proteins localize their cognate MCPH interactors to centrosomes and also promote centriole duplication. Consistent with a role for satellites in microcephaly, homozygous mutations in one satellite gene,CEP90, may cause MCPH. The satellite proteins, with the exception of CCDC14, and MCPH proteins promote centriole duplication by recruiting CDK2 to the centrosome. Thus, centriolar satellites build a MCPH complex critical for human neurodevelopment that promotes CDK2 centrosomal localization and centriole duplication.

Article and author information

Author details

  1. Andrew Kodani

    Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Timothy W Yu

    Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jeffrey R Johnson

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Divya Jayaraman

    Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tasha L Johnson

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lihadh Al-Gazali

    Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
    Competing interests
    The authors declare that no competing interests exist.
  7. Lāszló Sztriha

    Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
    Competing interests
    The authors declare that no competing interests exist.
  8. Jennifer N Partlow

    Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hanjun Kim

    Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Alexis L Krup

    Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Alexander Dammermann

    Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  12. Nevan Krogan

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Christopher A Walsh

    Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Jeremy F Reiter

    Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    For correspondence
    Jeremy.Reiter@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. W James Nelson, Stanford University, United States

Ethics

Human subjects: Subjects were identified and evaluated in a clinical setting for medical history, cognitive impairment and physical abnormalities. Peripheral blood samples were collected from the affected individuals and family members after obtaining written informed consent according to the protocols approved by the participating institutions and the ethical standards of the responsible national and institutional committees on human subject research.

Version history

  1. Received: March 18, 2015
  2. Accepted: August 21, 2015
  3. Accepted Manuscript published: August 22, 2015 (version 1)
  4. Accepted Manuscript updated: August 24, 2015 (version 2)
  5. Accepted Manuscript updated: September 2, 2015 (version 3)
  6. Version of Record published: September 18, 2015 (version 4)

Copyright

© 2015, Kodani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,023
    views
  • 1,263
    downloads
  • 112
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew Kodani
  2. Timothy W Yu
  3. Jeffrey R Johnson
  4. Divya Jayaraman
  5. Tasha L Johnson
  6. Lihadh Al-Gazali
  7. Lāszló Sztriha
  8. Jennifer N Partlow
  9. Hanjun Kim
  10. Alexis L Krup
  11. Alexander Dammermann
  12. Nevan Krogan
  13. Christopher A Walsh
  14. Jeremy F Reiter
(2015)
Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication
eLife 4:e07519.
https://doi.org/10.7554/eLife.07519

Share this article

https://doi.org/10.7554/eLife.07519

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.