Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling

  1. Catherine M Sweeney-Reed  Is a corresponding author
  2. Tino Zaehle
  3. Jürgen Voges
  4. Friedhelm C Schmitt
  5. Lars Buentjen
  6. Klaus Kopitzki
  7. Hermann Hinrichs
  8. Hans-Jochen Heinze
  9. Michael D Rugg
  10. Robert T Knight
  11. Alan Richardson-Klavehn
  1. Otto von Guericke University, Germany
  2. University of Texas at Dallas, United States
  3. University of California, Berkeley, United States

Abstract

Previously we reported electrophysiological evidence for a role for the anterior thalamic nucleus (ATN) in human memory formation (Sweeney-Reed et al. 2014). Theta-gamma cross-frequency coupling (CFC) predicted successful memory formation, with the involvement of gamma oscillations suggesting memory-relevant local processing in the ATN. The importance of the theta frequency range in memory processing is well-established, and phase alignment of oscillations is considered to be necessary for synaptic plasticity. We hypothesized that theta phase alignment in the ATN would be necessary for memory encoding. Further analysis of the electrophysiological data reveal that phase alignment in the theta rhythm was greater during successful compared with unsuccessful encoding, and that this alignment was correlated with the CFC. These findings support an active processing role for the ATN during memory formation.

Article and author information

Author details

  1. Catherine M Sweeney-Reed

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    For correspondence
    catherine.sweeney-reed@med.ovgu.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Tino Zaehle

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jürgen Voges

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Friedhelm C Schmitt

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Lars Buentjen

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Klaus Kopitzki

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Hermann Hinrichs

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Hans-Jochen Heinze

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael D Rugg

    Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Robert T Knight

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Alan Richardson-Klavehn

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: The measurements were approved by the Ethics Commission of the Medical Faculty of the Otto-von-Guericke University, Magdeburg (application number 0308), and all participants gave written informed consent in accordance with the Helsinki Declaration of 1975, as revised in 2000 and2008. Consent to participate in our study, as well as for publication of results in an anonymized format,was obtained by the neurosurgeon at the same time as consent was obtained for the surgicalprocedure.

Copyright

© 2015, Sweeney-Reed et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,600
    views
  • 379
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Catherine M Sweeney-Reed
  2. Tino Zaehle
  3. Jürgen Voges
  4. Friedhelm C Schmitt
  5. Lars Buentjen
  6. Klaus Kopitzki
  7. Hermann Hinrichs
  8. Hans-Jochen Heinze
  9. Michael D Rugg
  10. Robert T Knight
  11. Alan Richardson-Klavehn
(2015)
Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling
eLife 4:e07578.
https://doi.org/10.7554/eLife.07578

Share this article

https://doi.org/10.7554/eLife.07578

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.