Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling

  1. Catherine M Sweeney-Reed  Is a corresponding author
  2. Tino Zaehle
  3. Jürgen Voges
  4. Friedhelm C Schmitt
  5. Lars Buentjen
  6. Klaus Kopitzki
  7. Hermann Hinrichs
  8. Hans-Jochen Heinze
  9. Michael D Rugg
  10. Robert T Knight
  11. Alan Richardson-Klavehn
  1. Otto von Guericke University, Germany
  2. University of Texas at Dallas, United States
  3. University of California, Berkeley, United States

Abstract

Previously we reported electrophysiological evidence for a role for the anterior thalamic nucleus (ATN) in human memory formation (Sweeney-Reed et al. 2014). Theta-gamma cross-frequency coupling (CFC) predicted successful memory formation, with the involvement of gamma oscillations suggesting memory-relevant local processing in the ATN. The importance of the theta frequency range in memory processing is well-established, and phase alignment of oscillations is considered to be necessary for synaptic plasticity. We hypothesized that theta phase alignment in the ATN would be necessary for memory encoding. Further analysis of the electrophysiological data reveal that phase alignment in the theta rhythm was greater during successful compared with unsuccessful encoding, and that this alignment was correlated with the CFC. These findings support an active processing role for the ATN during memory formation.

Article and author information

Author details

  1. Catherine M Sweeney-Reed

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    For correspondence
    catherine.sweeney-reed@med.ovgu.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Tino Zaehle

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jürgen Voges

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Friedhelm C Schmitt

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Lars Buentjen

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Klaus Kopitzki

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Hermann Hinrichs

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Hans-Jochen Heinze

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael D Rugg

    Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Robert T Knight

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Alan Richardson-Klavehn

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: The measurements were approved by the Ethics Commission of the Medical Faculty of the Otto-von-Guericke University, Magdeburg (application number 0308), and all participants gave written informed consent in accordance with the Helsinki Declaration of 1975, as revised in 2000 and2008. Consent to participate in our study, as well as for publication of results in an anonymized format,was obtained by the neurosurgeon at the same time as consent was obtained for the surgicalprocedure.

Copyright

© 2015, Sweeney-Reed et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,599
    views
  • 379
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Catherine M Sweeney-Reed
  2. Tino Zaehle
  3. Jürgen Voges
  4. Friedhelm C Schmitt
  5. Lars Buentjen
  6. Klaus Kopitzki
  7. Hermann Hinrichs
  8. Hans-Jochen Heinze
  9. Michael D Rugg
  10. Robert T Knight
  11. Alan Richardson-Klavehn
(2015)
Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling
eLife 4:e07578.
https://doi.org/10.7554/eLife.07578

Share this article

https://doi.org/10.7554/eLife.07578

Further reading

    1. Neuroscience
    Diellor Basha, Amirmohammad Azarmehri ... Igor Timofeev
    Research Article

    Memory consolidation during sleep depends on the interregional coupling of slow waves, spindles, and sharp wave-ripples (SWRs), across the cortex, thalamus, and hippocampus. The reuniens nucleus of the thalamus, linking the medial prefrontal cortex (mPFC) and the hippocampus, may facilitate interregional coupling during sleep. To test this hypothesis, we used intracellular, extracellular unit and local field potential recordings in anesthetized and head restrained non-anesthetized cats as well as computational modelling. Electrical stimulation of the reuniens evoked both antidromic and orthodromic intracellular mPFC responses, consistent with bidirectional functional connectivity between mPFC, reuniens and hippocampus in anesthetized state. The major finding obtained from behaving animals is that at least during NREM sleep hippocampo-reuniens-mPFC form a functional loop. SWRs facilitate the triggering of thalamic spindles, which later reach neocortex. In return, transition to mPFC UP states increase the probability of hippocampal SWRs and later modulate spindle amplitude. During REM sleep hippocampal theta activity provides periodic locking of reuniens neuronal firing and strong crosscorrelation at LFP level, but the values of reuniens-mPFC crosscorrelation was relatively low and theta power at mPFC was low. The neural mass model of this network demonstrates that the strength of bidirectional hippocampo-thalamic connections determines the coupling of oscillations, suggesting a mechanistic link between synaptic weights and the propensity for interregional synchrony. Our results demonstrate the presence of functional connectivity in hippocampo-thalamo-cortical network, but the efficacy of this connectivity is modulated by behavioral state.

    1. Neuroscience
    Cameron T Ellis, Tristan S Yates ... Nicholas Turk-Browne
    Research Article

    Studying infant minds with movies is a promising way to increase engagement relative to traditional tasks. However, the spatial specificity and functional significance of movie-evoked activity in infants remains unclear. Here, we investigated what movies can reveal about the organization of the infant visual system. We collected fMRI data from 15 awake infants and toddlers aged 5–23 months who attentively watched a movie. The activity evoked by the movie reflected the functional profile of visual areas. Namely, homotopic areas from the two hemispheres responded similarly to the movie, whereas distinct areas responded dissimilarly, especially across dorsal and ventral visual cortex. Moreover, visual maps that typically require time-intensive and complicated retinotopic mapping could be predicted, albeit imprecisely, from movie-evoked activity in both data-driven analyses (i.e. independent component analysis) at the individual level and by using functional alignment into a common low-dimensional embedding to generalize across participants. These results suggest that the infant visual system is already structured to process dynamic, naturalistic information and that fine-grained cortical organization can be discovered from movie data.