Abstract

Accelerating discoveries of noncoding RNA (ncRNA) in myriad biological processes pose major challenges to structural and functional analysis. Despite progress in secondary structure modeling, high-throughput methods have generally failed to determine ncRNA tertiary structures, even at the 1-nm resolution that enables visualization of how helices and functional motifs are positioned in three dimensions. We report that integrating a new method called MOHCA-seq (Multiplexed •OH Cleavage Analysis with paired-end sequencing) with mutate-and-map secondary structure inference guides Rosetta 3D modeling to consistent 1-nm accuracy for intricately folded ncRNAs with lengths up to 188 nucleotides, including a blind RNA-puzzle challenge, the lariat-capping ribozyme. This multidimensional chemical mapping (MCM) pipeline resolves unexpected tertiary proximities for cyclic-di-GMP, glycine, and adenosylcobalamin riboswitch aptamers without their ligands and a loose structure for the recently discovered human HoxA9D IRES regulon. MCM offers a sequencing-based route to uncovering ncRNA 3D structure, applicable to functionally important but potentially heterogeneous states.

Article and author information

Author details

  1. Clarence Yu Cheng

    Department of Biochemistry, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Fang-Chieh Chou

    Department of Biochemistry, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wipapat Kladwang

    Department of Biochemistry, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Siqi Tian

    Department of Biochemistry, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Pablo Cordero

    Biomedical Informatics Program, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rhiju Das

    Department of Biochemistry, Stanford University, Stanford, United States
    For correspondence
    rhiju@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Yu Cheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,097
    views
  • 691
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clarence Yu Cheng
  2. Fang-Chieh Chou
  3. Wipapat Kladwang
  4. Siqi Tian
  5. Pablo Cordero
  6. Rhiju Das
(2015)
Consistent global structures of complex RNA states through multidimensional chemical mapping
eLife 4:e07600.
https://doi.org/10.7554/eLife.07600

Share this article

https://doi.org/10.7554/eLife.07600

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Lingzhi Gao, Dian Chen, Yu Liu
    Research Article

    Riboswitches represent a class of non-coding RNA that possess the unique ability to specifically bind ligands and, in response, regulate gene expression. A recent report unveiled a type of riboswitch, known as the guanidine-IV riboswitch, which responds to guanidine levels to regulate downstream genetic transcription. However, the precise molecular mechanism through which the riboswitch senses its target ligand and undergoes conformational changes remain elusive. This gap in understanding has impeded the potential applications of this riboswitch. To bridge this knowledge gap, our study investigated the conformational dynamics of the guanidine-IV riboswitch RNA upon ligand binding. We employed single-molecule fluorescence resonance energy transfer (smFRET) to dissect the behaviors of the aptamer, terminator, and full-length riboswitch. Our findings indicated that the aptamer portion exhibited higher sensitivity to guanidine compared to the terminator and full-length constructs. Additionally, we utilized Position-specific Labelling of RNA (PLOR) combined with smFRET to observe, at the single-nucleotide and single-molecule level, the structural transitions experienced by the guanidine-IV riboswitch during transcription. Notably, we discovered that the influence of guanidine on the riboswitch RNA’s conformations was significantly reduced after the transcription of 88 nucleotides. Furthermore, we proposed a folding model for the guanidine-IV riboswitch in the absence and presence of guanidine, thereby providing insights into its ligand-response mechanism.