Abstract

Accelerating discoveries of noncoding RNA (ncRNA) in myriad biological processes pose major challenges to structural and functional analysis. Despite progress in secondary structure modeling, high-throughput methods have generally failed to determine ncRNA tertiary structures, even at the 1-nm resolution that enables visualization of how helices and functional motifs are positioned in three dimensions. We report that integrating a new method called MOHCA-seq (Multiplexed •OH Cleavage Analysis with paired-end sequencing) with mutate-and-map secondary structure inference guides Rosetta 3D modeling to consistent 1-nm accuracy for intricately folded ncRNAs with lengths up to 188 nucleotides, including a blind RNA-puzzle challenge, the lariat-capping ribozyme. This multidimensional chemical mapping (MCM) pipeline resolves unexpected tertiary proximities for cyclic-di-GMP, glycine, and adenosylcobalamin riboswitch aptamers without their ligands and a loose structure for the recently discovered human HoxA9D IRES regulon. MCM offers a sequencing-based route to uncovering ncRNA 3D structure, applicable to functionally important but potentially heterogeneous states.

Article and author information

Author details

  1. Clarence Yu Cheng

    Department of Biochemistry, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Fang-Chieh Chou

    Department of Biochemistry, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wipapat Kladwang

    Department of Biochemistry, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Siqi Tian

    Department of Biochemistry, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Pablo Cordero

    Biomedical Informatics Program, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rhiju Das

    Department of Biochemistry, Stanford University, Stanford, United States
    For correspondence
    rhiju@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Timothy W Nilsen, Case Western Reserve University, United States

Version history

  1. Received: March 19, 2015
  2. Accepted: June 2, 2015
  3. Accepted Manuscript published: June 2, 2015 (version 1)
  4. Version of Record published: July 8, 2015 (version 2)

Copyright

© 2015, Yu Cheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,085
    views
  • 686
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clarence Yu Cheng
  2. Fang-Chieh Chou
  3. Wipapat Kladwang
  4. Siqi Tian
  5. Pablo Cordero
  6. Rhiju Das
(2015)
Consistent global structures of complex RNA states through multidimensional chemical mapping
eLife 4:e07600.
https://doi.org/10.7554/eLife.07600

Share this article

https://doi.org/10.7554/eLife.07600

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.