An open-source computational and data resource to analyze digital maps of immunopeptidomes

  1. Etienne Caron  Is a corresponding author
  2. Lucia Espona
  3. Daniel J Kowalewski
  4. Heiko Schuster
  5. Nicola Ternette
  6. Adán Alpízar
  7. Ralf B Schittenhelm
  8. Sri H Ramarathinam
  9. Cecilia S Lindestam Arlehamn
  10. Ching Chiek Koh
  11. Ludovic C Gillet
  12. Armin Rabsteyn
  13. Pedro Navarro
  14. Sangtae Kim
  15. Henry Lam
  16. Theo Sturm
  17. Miguel Marcilla
  18. Alessandro Sette
  19. David S Campbell
  20. Eric W Deutsch
  21. Robert L Moritz
  22. Anthony W Purcell
  23. Hans-Georg Rammensee
  24. Stefan Stevanovic
  25. Ruedi Aebersold
  1. ETH Zürich, Switzerland
  2. University of Tübingen, Germany
  3. University of Oxford, United Kingdom
  4. Spanish National Biotechnology Centre, Spain
  5. Monash University, Australia
  6. Monash University, United States
  7. La Jolla Institute for Allergy and Immunology, United States
  8. University Medical Center of the Johannes Gutenberg University Mainz, Germany
  9. Pacific Northwest National Laboratory, United States
  10. Hong Kong University of Science and Technology, China
  11. Institute for Systems Biology, United States

Abstract

We present a novel mass spectrometry-based high-throughput workflow and an open-source computational and data resource to reproducibly identify and quantify HLA-associated peptides. Collectively, the resources support the generation of HLA allele-specific peptide assay libraries consisting of consensus fragment ion spectra, and the analysis of quantitative digital maps of HLA peptidomes generated from a range of biological sources by SWATH mass spectrometry (MS). This study represents the first community-based effort to develop a robust platform for the reproducible and quantitative measurement of the entire repertoire of peptides presented by HLA molecules, an essential step towards the design of efficient immunotherapies.

Article and author information

Author details

  1. Etienne Caron

    Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
    For correspondence
    caron@imsb.biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
  2. Lucia Espona

    Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel J Kowalewski

    Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Heiko Schuster

    Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicola Ternette

    Target Discovery Institute Mass Spectrometry Laboratory, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Adán Alpízar

    Proteomics Unit, Spanish National Biotechnology Centre, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Ralf B Schittenhelm

    Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Sri H Ramarathinam

    Department of Biochemistry and Molecular Biology, Monash University, Clayton, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Cecilia S Lindestam Arlehamn

    La Jolla Institute for Allergy and Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ching Chiek Koh

    Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Ludovic C Gillet

    Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Armin Rabsteyn

    Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Pedro Navarro

    Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Sangtae Kim

    Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Henry Lam

    Division of Biomedical Engineering and Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Theo Sturm

    Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  17. Miguel Marcilla

    Proteomics Unit, Spanish National Biotechnology Centre, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  18. Alessandro Sette

    La Jolla Institute for Allergy and Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. David S Campbell

    Institute for Systems Biology, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Eric W Deutsch

    Institute for Systems Biology, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Robert L Moritz

    Institute for Systems Biology, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Anthony W Purcell

    Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  23. Hans-Georg Rammensee

    Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  24. Stefan Stevanovic

    Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  25. Ruedi Aebersold

    Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Arup K Chakraborty, Massachusetts Institute of Technology, United States

Ethics

Human subjects: Informed consent was obtained in accordance with the Declaration of Helsinki protocol. The study was performed according to the guidelines of the local ethics committee (University of Tubingen, Germany).

Version history

  1. Received: March 23, 2015
  2. Accepted: July 7, 2015
  3. Accepted Manuscript published: July 8, 2015 (version 1)
  4. Version of Record published: July 20, 2015 (version 2)

Copyright

© 2015, Caron et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,776
    Page views
  • 1,224
    Downloads
  • 82
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Etienne Caron
  2. Lucia Espona
  3. Daniel J Kowalewski
  4. Heiko Schuster
  5. Nicola Ternette
  6. Adán Alpízar
  7. Ralf B Schittenhelm
  8. Sri H Ramarathinam
  9. Cecilia S Lindestam Arlehamn
  10. Ching Chiek Koh
  11. Ludovic C Gillet
  12. Armin Rabsteyn
  13. Pedro Navarro
  14. Sangtae Kim
  15. Henry Lam
  16. Theo Sturm
  17. Miguel Marcilla
  18. Alessandro Sette
  19. David S Campbell
  20. Eric W Deutsch
  21. Robert L Moritz
  22. Anthony W Purcell
  23. Hans-Georg Rammensee
  24. Stefan Stevanovic
  25. Ruedi Aebersold
(2015)
An open-source computational and data resource to analyze digital maps of immunopeptidomes
eLife 4:e07661.
https://doi.org/10.7554/eLife.07661

Share this article

https://doi.org/10.7554/eLife.07661

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Bingrui Li, Fernanda G Kugeratski, Raghu Kalluri
    Research Article

    Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Alain Pulfer, Diego Ulisse Pizzagalli ... Santiago Fernandez Gonzalez
    Tools and Resources

    Intravital microscopy has revolutionized live-cell imaging by allowing the study of spatial–temporal cell dynamics in living animals. However, the complexity of the data generated by this technology has limited the development of effective computational tools to identify and quantify cell processes. Amongst them, apoptosis is a crucial form of regulated cell death involved in tissue homeostasis and host defense. Live-cell imaging enabled the study of apoptosis at the cellular level, enhancing our understanding of its spatial–temporal regulation. However, at present, no computational method can deliver robust detection of apoptosis in microscopy timelapses. To overcome this limitation, we developed ADeS, a deep learning-based apoptosis detection system that employs the principle of activity recognition. We trained ADeS on extensive datasets containing more than 10,000 apoptotic instances collected both in vitro and in vivo, achieving a classification accuracy above 98% and outperforming state-of-the-art solutions. ADeS is the first method capable of detecting the location and duration of multiple apoptotic events in full microscopy timelapses, surpassing human performance in the same task. We demonstrated the effectiveness and robustness of ADeS across various imaging modalities, cell types, and staining techniques. Finally, we employed ADeS to quantify cell survival in vitro and tissue damage in mice, demonstrating its potential application in toxicity assays, treatment evaluation, and inflammatory dynamics. Our findings suggest that ADeS is a valuable tool for the accurate detection and quantification of apoptosis in live-cell imaging and, in particular, intravital microscopy data, providing insights into the complex spatial–temporal regulation of this process.