The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation

  1. Martin Müller
  2. Oliver Schmidt
  3. Mihaela Angelova
  4. Klaus Faserl
  5. Sabine Weys
  6. Leopold Kremser
  7. Thaddäus Pfaffenwimmer
  8. Thomas Dalik
  9. Claudine Kraft
  10. Zlatko Trajanoski
  11. Herbert Lindner
  12. David Teis  Is a corresponding author
  1. Medical University of Innsbruck, Austria
  2. University of Vienna, Austria
  3. University of Natural Resources and Applied Biosciences, Austria

Abstract

The degradation and recycling of cellular components is essential for cell growth and survival. Here we show how selective and non-selective lysosomal protein degradation pathways cooperate to ensure cell survival upon nutrient limitation. A quantitative analysis of starvation-induced proteome remodeling in yeast reveals comprehensive changes already in the first three hours. In this period, many different integral plasma membrane proteins undergo endocytosis and degradation in vacuoles via the multivesicular body (MVB) pathway. Their degradation becomes essential to maintain critical amino acids levels that uphold protein synthesis early during starvation. This promotes cellular adaptation, including the de novo synthesis of vacuolar hydrolases to boost the vacuolar catabolic activity. This order of events primes vacuoles for the efficient degradation of bulk cytoplasm via autophagy. Hence, a catabolic cascade including the coordinated action of the MVB pathway and autophagy is essential to enter quiescence to survive extended periods of nutrient limitation.

Article and author information

Author details

  1. Martin Müller

    Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Oliver Schmidt

    Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Mihaela Angelova

    Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Klaus Faserl

    Division of Clinical Biochemistry, ProteinMicroAnalysis Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Sabine Weys

    Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Leopold Kremser

    Division of Clinical Biochemistry, ProteinMicroAnalysis Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Thaddäus Pfaffenwimmer

    Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Dalik

    Department of Chemistry, University of Natural Resources and Applied Biosciences, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Claudine Kraft

    Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  10. Zlatko Trajanoski

    Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  11. Herbert Lindner

    Division of Clinical Biochemistry, ProteinMicroAnalysis Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  12. David Teis

    Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    For correspondence
    david.teis@i-med.ac.at
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Müller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,677
    views
  • 1,506
    downloads
  • 101
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin Müller
  2. Oliver Schmidt
  3. Mihaela Angelova
  4. Klaus Faserl
  5. Sabine Weys
  6. Leopold Kremser
  7. Thaddäus Pfaffenwimmer
  8. Thomas Dalik
  9. Claudine Kraft
  10. Zlatko Trajanoski
  11. Herbert Lindner
  12. David Teis
(2015)
The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation
eLife 4:e07736.
https://doi.org/10.7554/eLife.07736

Share this article

https://doi.org/10.7554/eLife.07736

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Gina Partipilo, Yang Gao ... Benjamin K Keitz
    Feature Article

    Troubleshooting is an important part of experimental research, but graduate students rarely receive formal training in this skill. In this article, we describe an initiative called Pipettes and Problem Solving that we developed to teach troubleshooting skills to graduate students at the University of Texas at Austin. An experienced researcher presents details of a hypothetical experiment that has produced unexpected results, and students have to propose new experiments that will help identify the source of the problem. We also provide slides and other resources that can be used to facilitate problem solving and teach troubleshooting skills at other institutions.