Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation

  1. Zhengjian Zhang  Is a corresponding author
  2. Zarko Boskovic
  3. Mahmud M Hussain
  4. Wenxin Hu
  5. Carla Inouye
  6. Han-Je Kim
  7. A Katherine Abole
  8. Mary K Doud
  9. Timothy A Lewis
  10. Angela N Koehler
  11. Stuart L Schreiber
  12. Robert Tjian
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States
  2. Howard Hughes Medical Institute, Harvard University, United States
  3. Howard Hughes Medical Institute, University of California, Berkeley, United States
  4. Broad Institute, United States
  5. University of California, Berkeley, United States

Abstract

Intrinsically disordered protein regions (IDRs) are peptide segments that fail to form stable 3-dimensional structures in the absence of partner proteins. They are abundant in eukaryotic proteomes and are often associated with human diseases, but their biological functions have been elusive to study. Here we report the identification of a tin(IV) oxochloride-derived cluster that binds an evolutionarily conserved IDR within the metazoan TFIID transcription complex. Binding arrests an isomerization of promoter-bound TFIID that is required for the engagement of Pol II during the first (de novo) round of transcription initiation. However, the specific chemical probe does not affect reinitiation, which requires the re-entry of Pol II, thus, mechanistically distinguishing these two modes of transcription initiation. This work also suggests a new avenue for targeting the elusive IDRs by harnessing certain features of metal-based complexes for mechanistic studies, and for the development of novel pharmaceutical interventions.

Article and author information

Author details

  1. Zhengjian Zhang

    Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    zhangzh@janelia.hhmi.org
    Competing interests
    No competing interests declared.
  2. Zarko Boskovic

    Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Mahmud M Hussain

    Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Wenxin Hu

    Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  5. Carla Inouye

    Li Ka Shing Center for Biomedical and Health Sciences, Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Han-Je Kim

    Center for the Science of Therapeutics, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  7. A Katherine Abole

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. Mary K Doud

    Center for the Science of Therapeutics, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  9. Timothy A Lewis

    Center for the Science of Therapeutics, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  10. Angela N Koehler

    Center for the Science of Therapeutics, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  11. Stuart L Schreiber

    Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  12. Robert Tjian

    Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    Robert Tjian, President of the Howard Hughes Medical Institute (2009-present), one of the three founding funders of eLife, and a member of eLife's Board of Directors.

Copyright

© 2015, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,689
    views
  • 615
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhengjian Zhang
  2. Zarko Boskovic
  3. Mahmud M Hussain
  4. Wenxin Hu
  5. Carla Inouye
  6. Han-Je Kim
  7. A Katherine Abole
  8. Mary K Doud
  9. Timothy A Lewis
  10. Angela N Koehler
  11. Stuart L Schreiber
  12. Robert Tjian
(2015)
Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation
eLife 4:e07777.
https://doi.org/10.7554/eLife.07777

Share this article

https://doi.org/10.7554/eLife.07777

Further reading

    1. Biochemistry and Chemical Biology
    Luca Unione, Jesús Jiménez-Barbero
    Insight

    Glycans play an important role in modulating the interactions between natural killer cells and antibodies to fight pathogens and harmful cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.