Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation

  1. Zhengjian Zhang  Is a corresponding author
  2. Zarko Boskovic
  3. Mahmud M Hussain
  4. Wenxin Hu
  5. Carla Inouye
  6. Han-Je Kim
  7. A Katherine Abole
  8. Mary K Doud
  9. Timothy A Lewis
  10. Angela N Koehler
  11. Stuart L Schreiber
  12. Robert Tjian
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States
  2. Howard Hughes Medical Institute, Harvard University, United States
  3. Howard Hughes Medical Institute, University of California, Berkeley, United States
  4. Broad Institute, United States
  5. University of California, Berkeley, United States

Abstract

Intrinsically disordered protein regions (IDRs) are peptide segments that fail to form stable 3-dimensional structures in the absence of partner proteins. They are abundant in eukaryotic proteomes and are often associated with human diseases, but their biological functions have been elusive to study. Here we report the identification of a tin(IV) oxochloride-derived cluster that binds an evolutionarily conserved IDR within the metazoan TFIID transcription complex. Binding arrests an isomerization of promoter-bound TFIID that is required for the engagement of Pol II during the first (de novo) round of transcription initiation. However, the specific chemical probe does not affect reinitiation, which requires the re-entry of Pol II, thus, mechanistically distinguishing these two modes of transcription initiation. This work also suggests a new avenue for targeting the elusive IDRs by harnessing certain features of metal-based complexes for mechanistic studies, and for the development of novel pharmaceutical interventions.

Article and author information

Author details

  1. Zhengjian Zhang

    Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    zhangzh@janelia.hhmi.org
    Competing interests
    No competing interests declared.
  2. Zarko Boskovic

    Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Mahmud M Hussain

    Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Wenxin Hu

    Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  5. Carla Inouye

    Li Ka Shing Center for Biomedical and Health Sciences, Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Han-Je Kim

    Center for the Science of Therapeutics, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  7. A Katherine Abole

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. Mary K Doud

    Center for the Science of Therapeutics, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  9. Timothy A Lewis

    Center for the Science of Therapeutics, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  10. Angela N Koehler

    Center for the Science of Therapeutics, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  11. Stuart L Schreiber

    Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  12. Robert Tjian

    Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    Robert Tjian, President of the Howard Hughes Medical Institute (2009-present), one of the three founding funders of eLife, and a member of eLife's Board of Directors.

Copyright

© 2015, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhengjian Zhang
  2. Zarko Boskovic
  3. Mahmud M Hussain
  4. Wenxin Hu
  5. Carla Inouye
  6. Han-Je Kim
  7. A Katherine Abole
  8. Mary K Doud
  9. Timothy A Lewis
  10. Angela N Koehler
  11. Stuart L Schreiber
  12. Robert Tjian
(2015)
Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation
eLife 4:e07777.
https://doi.org/10.7554/eLife.07777

Share this article

https://doi.org/10.7554/eLife.07777

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Assmaa Elsheikh, Camden M Driggers ... Show-Ling Shyng
    Research Article

    Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking-impaired CHI is hindered by high affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Andrew P Latham, Longchen Zhu ... Bin Zhang
    Research Article

    The phase separation of intrinsically disordered proteins is emerging as an important mechanism for cellular organization. However, efforts to connect protein sequences to the physical properties of condensates, that is, the molecular grammar, are hampered by a lack of effective approaches for probing high-resolution structural details. Using a combination of multiscale simulations and fluorescence lifetime imaging microscopy experiments, we systematically explored a series of systems consisting of diblock elastin-like polypeptides (ELPs). The simulations succeeded in reproducing the variation of condensate stability upon amino acid substitution and revealed different microenvironments within a single condensate, which we verified with environmentally sensitive fluorophores. The interspersion of hydrophilic and hydrophobic residues and a lack of secondary structure formation result in an interfacial environment, which explains both the strong correlation between ELP condensate stability and interfacial hydrophobicity scales, as well as the prevalence of protein-water hydrogen bonds. Our study uncovers new mechanisms for condensate stability and organization that may be broadly applicable.