Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation

  1. Zhengjian Zhang  Is a corresponding author
  2. Zarko Boskovic
  3. Mahmud M Hussain
  4. Wenxin Hu
  5. Carla Inouye
  6. Han-Je Kim
  7. A Katherine Abole
  8. Mary K Doud
  9. Timothy A Lewis
  10. Angela N Koehler
  11. Stuart L Schreiber
  12. Robert Tjian
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States
  2. Howard Hughes Medical Institute, Harvard University, United States
  3. Howard Hughes Medical Institute, University of California, Berkeley, United States
  4. Broad Institute, United States
  5. University of California, Berkeley, United States

Abstract

Intrinsically disordered protein regions (IDRs) are peptide segments that fail to form stable 3-dimensional structures in the absence of partner proteins. They are abundant in eukaryotic proteomes and are often associated with human diseases, but their biological functions have been elusive to study. Here we report the identification of a tin(IV) oxochloride-derived cluster that binds an evolutionarily conserved IDR within the metazoan TFIID transcription complex. Binding arrests an isomerization of promoter-bound TFIID that is required for the engagement of Pol II during the first (de novo) round of transcription initiation. However, the specific chemical probe does not affect reinitiation, which requires the re-entry of Pol II, thus, mechanistically distinguishing these two modes of transcription initiation. This work also suggests a new avenue for targeting the elusive IDRs by harnessing certain features of metal-based complexes for mechanistic studies, and for the development of novel pharmaceutical interventions.

Article and author information

Author details

  1. Zhengjian Zhang

    Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    zhangzh@janelia.hhmi.org
    Competing interests
    No competing interests declared.
  2. Zarko Boskovic

    Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Mahmud M Hussain

    Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Wenxin Hu

    Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  5. Carla Inouye

    Li Ka Shing Center for Biomedical and Health Sciences, Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Han-Je Kim

    Center for the Science of Therapeutics, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  7. A Katherine Abole

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. Mary K Doud

    Center for the Science of Therapeutics, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  9. Timothy A Lewis

    Center for the Science of Therapeutics, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  10. Angela N Koehler

    Center for the Science of Therapeutics, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  11. Stuart L Schreiber

    Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  12. Robert Tjian

    Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    Robert Tjian, President of the Howard Hughes Medical Institute (2009-present), one of the three founding funders of eLife, and a member of eLife's Board of Directors.

Reviewing Editor

  1. Danny Reinberg, Howard Hughes Medical Institute, New York University School of Medicine, United States

Version history

  1. Received: April 29, 2015
  2. Accepted: August 27, 2015
  3. Accepted Manuscript published: August 28, 2015 (version 1)
  4. Version of Record published: September 25, 2015 (version 2)

Copyright

© 2015, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,672
    views
  • 611
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhengjian Zhang
  2. Zarko Boskovic
  3. Mahmud M Hussain
  4. Wenxin Hu
  5. Carla Inouye
  6. Han-Je Kim
  7. A Katherine Abole
  8. Mary K Doud
  9. Timothy A Lewis
  10. Angela N Koehler
  11. Stuart L Schreiber
  12. Robert Tjian
(2015)
Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation
eLife 4:e07777.
https://doi.org/10.7554/eLife.07777

Share this article

https://doi.org/10.7554/eLife.07777

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.