Neuropilin-2/Semaphorin-3F-mediated repulsion promotes inner hair cell innervation by spiral ganglion neurons

  1. Thomas M Coate  Is a corresponding author
  2. Nathalie A Spita
  3. Kaidi D Zhang
  4. Kevin T Isgrig
  5. Matthew W Kelley
  1. National Institute on Deafness and Other Communication Disorders, United States
  2. Georgetown University, United States

Abstract

Auditory function is dependent on the formation of specific innervation patterns between mechanosensory hair cells and afferent spiral ganglion neurons (SGNs). In particular, type I SGNs must precisely connect with inner hair cells (IHCs) while avoiding connections with nearby outer hair cells (OHCs). The factors that mediate these patterning events are largely unknown. Using sparse-labeling and time-lapse imaging we visualized for the first time the behaviors of developing SGNs including active retraction of processes from OHCs, suggesting that some type I SGNs contact OHCs before forming synapses with IHCs. In addition, we demonstrate that expression of Semaphorin-3F in the OHC region inhibits type I SGN process extension by activating Neuropilin-2 receptors expressed on SGNs. These results suggest a model in which cochlear innervation patterns by type I SGNs are determined, at least in part, through a Semaphorin-3F-mediated inhibitory signal that impedes processes from extending beyond the IHC region.

Article and author information

Author details

  1. Thomas M Coate

    Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
    For correspondence
    tmc91@georgetown.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Nathalie A Spita

    Department of Biology, Georgetown University, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kaidi D Zhang

    Department of Biology, Georgetown University, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kevin T Isgrig

    Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew W Kelley

    Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animals used in this study were maintained in accordance with the NIH Animal Care and Use Committee, Protocol #1262, and the Georgetown University Animal Care and Use Committee, Protocol # 14-040-100179.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,362
    views
  • 573
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.07830

Further reading

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.