Neuropilin-2/Semaphorin-3F-mediated repulsion promotes inner hair cell innervation by spiral ganglion neurons

  1. Thomas M Coate  Is a corresponding author
  2. Nathalie A Spita
  3. Kaidi D Zhang
  4. Kevin T Isgrig
  5. Matthew W Kelley
  1. National Institute on Deafness and Other Communication Disorders, United States
  2. Georgetown University, United States

Abstract

Auditory function is dependent on the formation of specific innervation patterns between mechanosensory hair cells and afferent spiral ganglion neurons (SGNs). In particular, type I SGNs must precisely connect with inner hair cells (IHCs) while avoiding connections with nearby outer hair cells (OHCs). The factors that mediate these patterning events are largely unknown. Using sparse-labeling and time-lapse imaging we visualized for the first time the behaviors of developing SGNs including active retraction of processes from OHCs, suggesting that some type I SGNs contact OHCs before forming synapses with IHCs. In addition, we demonstrate that expression of Semaphorin-3F in the OHC region inhibits type I SGN process extension by activating Neuropilin-2 receptors expressed on SGNs. These results suggest a model in which cochlear innervation patterns by type I SGNs are determined, at least in part, through a Semaphorin-3F-mediated inhibitory signal that impedes processes from extending beyond the IHC region.

Article and author information

Author details

  1. Thomas M Coate

    Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
    For correspondence
    tmc91@georgetown.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Nathalie A Spita

    Department of Biology, Georgetown University, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kaidi D Zhang

    Department of Biology, Georgetown University, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kevin T Isgrig

    Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew W Kelley

    Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animals used in this study were maintained in accordance with the NIH Animal Care and Use Committee, Protocol #1262, and the Georgetown University Animal Care and Use Committee, Protocol # 14-040-100179.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,339
    views
  • 568
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas M Coate
  2. Nathalie A Spita
  3. Kaidi D Zhang
  4. Kevin T Isgrig
  5. Matthew W Kelley
(2015)
Neuropilin-2/Semaphorin-3F-mediated repulsion promotes inner hair cell innervation by spiral ganglion neurons
eLife 4:e07830.
https://doi.org/10.7554/eLife.07830

Share this article

https://doi.org/10.7554/eLife.07830

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Developmental Biology
    Michele Bertacchi, Gwendoline Maharaux ... Michèle Studer
    Research Article Updated

    The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.