Functional evidence implicating chromosome 7q22 haploinsufficiency in myelodysplastic syndrome pathogenesis

  1. Jasmine C Wong
  2. Kelley M Weinfurtner
  3. Maria del pilar Alzamora
  4. Scott C Kogan
  5. Michael R Burgess
  6. Yan Zhang
  7. Joy Nakitandwe
  8. Jing Ma
  9. Jinjun Cheng
  10. Shann-Ching Chen
  11. Theodore T Ho
  12. Johanna Flach
  13. Damien Reynaud
  14. Emmanuelle Passegué
  15. James R Downing
  16. Kevin Shannon  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Celgene Corporation, United States
  3. Chinese Academy of Sciences, China
  4. St. Jude Children's Research Hospital, United States
  5. Thermo Fisher Scientific, United States
  6. Institute of Experimental Cancer Research, Germany
  7. Cincinnati Children's Hospital Medical Center, United States

Abstract

Chromosome 7 deletions are highly prevalent in myelodysplastic syndrome (MDS), and likely contribute to aberrant growth through haploinsufficiency. We generated mice with a heterozygous germline deletion of a 2 Mb interval of chromosome band 5A3 syntenic to a commonly deleted segment of human 7q22, and show that mutant hematopoietic cells exhibit cardinal features of MDS. Specifically, the long-term hematopoietic stem cell (HSC) compartment is expanded in 5A3+/del mice, and the distribution of myeloid progenitors (MP) is altered. 5A3+/del HSCs are defective for lymphoid repopulating potential and show a myeloid lineage output bias. These cell autonomous abnormalities are exacerbated by physiologic aging and upon serial transplantation. The 5A3 deletion partially rescues defective repopulation in Gata2 mutant mice. 5A3+/del hematopoietic cells exhibit decreased expression of oxidative phosphorylation genes, increased levels of reactive oxygen species, and perturbed oxygen consumption. These studies provide the first functional data linking 7q22 deletions to MDS pathogenesis.

Article and author information

Author details

  1. Jasmine C Wong

    Department of Pediatrics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kelley M Weinfurtner

    Department of Pediatrics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maria del pilar Alzamora

    Department of Pediatrics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Scott C Kogan

    Department of Laboratory Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael R Burgess

    Celgene Corporation, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yan Zhang

    Unit of Hematopoietic Stem Cell and Transgenic Animal Models, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Joy Nakitandwe

    Department of Pathology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jing Ma

    Department of Pathology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jinjun Cheng

    Department of Pathology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shann-Ching Chen

    Thermo Fisher Scientific, South San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Theodore T Ho

    Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Johanna Flach

    Comprehensive Cancer Center, Institute of Experimental Cancer Research, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Damien Reynaud

    Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Emmanuelle Passegué

    Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. James R Downing

    Department of Pathology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Kevin Shannon

    Department of Pediatrics, University of California, San Francisco, San Francisco, United States
    For correspondence
    ShannonK@peds.ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Study mice were housed in a specific pathogen-free facility at the University of California San Francisco, and all animal experiments were conducted in strict accordance with the protocols approved by the Institutional Animal Care and Use Committee (IACUC) of the University of California, San Francisco (Approval number: AN091877-03).

Copyright

© 2015, Wong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,025
    views
  • 384
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jasmine C Wong
  2. Kelley M Weinfurtner
  3. Maria del pilar Alzamora
  4. Scott C Kogan
  5. Michael R Burgess
  6. Yan Zhang
  7. Joy Nakitandwe
  8. Jing Ma
  9. Jinjun Cheng
  10. Shann-Ching Chen
  11. Theodore T Ho
  12. Johanna Flach
  13. Damien Reynaud
  14. Emmanuelle Passegué
  15. James R Downing
  16. Kevin Shannon
(2015)
Functional evidence implicating chromosome 7q22 haploinsufficiency in myelodysplastic syndrome pathogenesis
eLife 4:e07839.
https://doi.org/10.7554/eLife.07839

Share this article

https://doi.org/10.7554/eLife.07839

Further reading

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Steven Henikoff, David L Levens
    Insight

    A new method for mapping torsion provides insights into the ways that the genome responds to the torsion generated by RNA polymerase II.