LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling

  1. Ayaka Ito
  2. Cynthia Hong
  3. Xin Rong
  4. Xuewei Zhu
  5. Elizabeth J Tarling
  6. Per Niklas Hedde
  7. Enrico Gratton
  8. John Parks
  9. Peter Tontonoz  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California, Los Angeles, United States
  2. Wake Forest School of Medicine, United States
  3. University of California, Los Angeles, United States
  4. University of California, Irvine, United States

Abstract

The liver X receptors (LXRs) are transcriptional regulators of lipid homeostasis that also have potent anti-inflammatory effects. The molecular basis for their anti-inflammatory effects is incompletely understood, but has been proposed to involve the indirect tethering of LXRs to inflammatory gene promoters. Here we demonstrate that the ability of LXRs to repress inflammatory gene expression in cells and mice derives primarily from their ability to regulate lipid metabolism through transcriptional activation and can occur in the absence of SUMOylation. Moreover, we identify the putative lipid transporter Abca1 as a critical mediator of LXR's anti-inflammatory effects. Activation of LXR inhibits signaling from TLRs 2, 4 and 9 to their downstream NF-κB and MAPK effectors through Abca1-dependent changes in membrane lipid organization that disrupt the recruitment of MyD88 and TRAF6. These data suggest that a common mechanism-direct transcriptional activation-underlies the dual biological functions of LXRs in metabolism and inflammation.

Article and author information

Author details

  1. Ayaka Ito

    Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Cynthia Hong

    Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Xin Rong

    Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Xuewei Zhu

    Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
    Competing interests
    No competing interests declared.
  5. Elizabeth J Tarling

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Per Niklas Hedde

    Laboratory of Fluorescence Dynamics, Biomedical Engineering Department, Center for Complex Biological Systems, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  7. Enrico Gratton

    Laboratory of Fluorescence Dynamics, Biomedical Engineering Department, Center for Complex Biological Systems, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  8. John Parks

    Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
    Competing interests
    No competing interests declared.
  9. Peter Tontonoz

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    ptontonoz@mednet.ucla.edu
    Competing interests
    Peter Tontonoz, Reviewing editor, eLife.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#99-131 and 2003-166) of the University of California, Los Angeles.

Copyright

© 2015, Ito et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,567
    views
  • 1,378
    downloads
  • 222
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ayaka Ito
  2. Cynthia Hong
  3. Xin Rong
  4. Xuewei Zhu
  5. Elizabeth J Tarling
  6. Per Niklas Hedde
  7. Enrico Gratton
  8. John Parks
  9. Peter Tontonoz
(2015)
LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling
eLife 4:e08009.
https://doi.org/10.7554/eLife.08009

Share this article

https://doi.org/10.7554/eLife.08009

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Liyi Wang, Shiqi Liu ... Tizhong Shan
    Research Article

    Conjugated linoleic acids (CLAs) can serve as a nutritional intervention to regulate quality, function, and fat infiltration in skeletal muscles, but the specific cytological mechanisms remain unknown. Here, we applied single-nucleus RNA-sequencing (snRNA-seq) to characterize the cytological mechanism of CLAs regulates fat infiltration in skeletal muscles based on pig models. We investigated the regulatory effects of CLAs on cell populations and molecular characteristics in pig muscles and found CLAs could promote the transformation of fast glycolytic myofibers into slow oxidative myofibers. We also observed three subpopulations including SCD+/DGAT2+, FABP5+/SIAH1+, and PDE4D+/PDE7B+ subclusters in adipocytes and CLAs could increase the percentage of SCD+/DGAT2+ adipocytes. RNA velocity analysis showed FABP5+/SIAH1+ and PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ adipocytes. We further verified the differentiated trajectory of mature adipocytes and identified PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ and FABP5+/SIAH1+ adipocytes by using high intramuscular fat (IMF) content Laiwu pig models. The cell-cell communication analysis identified the interaction network between adipocytes and other subclusters such as fibro/adipogenic progenitors (FAPs). Pseudotemporal trajectory analysis and RNA velocity analysis also showed FAPs could differentiate into PDE4D+/PDE7B+ preadipocytes and we discovered the differentiated trajectory of preadipocytes into mature adipocytes. Besides, we found CLAs could promote FAPs differentiate into SCD+/DGAT2+ adipocytes via inhibiting c-Jun N-terminal kinase (JNK) signaling pathway in vitro. This study provides a foundation for regulating fat infiltration in skeletal muscles by using nutritional strategies and provides potential opportunities to serve pig as an animal model to study human fat infiltrated diseases.

    1. Cancer Biology
    2. Cell Biology
    Zuzana Outla, Gizem Oyman-Eyrilmez ... Martin Gregor
    Research Article

    The most common primary malignancy of the liver, hepatocellular carcinoma (HCC), is a heterogeneous tumor entity with high metastatic potential and complex pathophysiology. Increasing evidence suggests that tissue mechanics plays a critical role in tumor onset and progression. Here, we show that plectin, a major cytoskeletal crosslinker protein, plays a crucial role in mechanical homeostasis and mechanosensitive oncogenic signaling that drives hepatocarcinogenesis. Our expression analyses revealed elevated plectin levels in liver tumors, which correlated with poor prognosis for HCC patients. Using autochthonous and orthotopic mouse models we demonstrated that genetic and pharmacological inactivation of plectin potently suppressed the initiation and growth of HCC. Moreover, plectin targeting potently inhibited the invasion potential of human HCC cells and reduced their metastatic outgrowth in the lung. Proteomic and phosphoproteomic profiling linked plectin-dependent disruption of cytoskeletal networks to attenuation of oncogenic FAK, MAPK/Erk, and PI3K/Akt signatures. Importantly, by combining cell line-based and murine HCC models, we show that plectin inhibitor plecstatin-1 (PST) is well-tolerated and potently inhibits HCC progression. In conclusion, our study demonstrates that plectin-controlled cytoarchitecture is a key determinant of HCC development and suggests that pharmacologically induced disruption of mechanical homeostasis may represent a new therapeutic strategy for HCC treatment.