TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23)

  1. Louise A Stephen
  2. Hasan Tawamie
  3. Gemma M Davis
  4. Lars Tebbe
  5. Peter Nürnberg
  6. Gudrun Nürnberg
  7. Holger Thiele
  8. Michaela Thoenes
  9. Eugen Boltshauser
  10. Steffen Uebe
  11. Oliver Rompel
  12. André Reis
  13. Arif B Ekici
  14. Lynn McTeir
  15. Amy M Fraser
  16. Emma A Hall
  17. Pleasantine Mill
  18. Nicolas Daudet
  19. Courtney Cross
  20. Uwe Wolfrum
  21. Rami Abou Jamra
  22. Megan G Davey  Is a corresponding author
  23. Hanno J Bolz
  1. University of Edinburgh, United Kingdom
  2. Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
  3. Johannes Gutenberg University of Mainz, Germany
  4. University of Cologne, Germany
  5. University Hospital of Cologne, Germany
  6. University Children's Hospital Zurich, Switzerland
  7. University College London, United Kingdom
  8. A.T. Still University, United States

Abstract

Joubert syndrome (JBTS) is a severe recessive neurodevelopmental ciliopathy which can affect several organ systems. Mutations in known JBTS genes account for approximately half of the cases. By homozygosity mapping and whole-exome sequencing, we identified a novel locus, JBTS23, with a homozygous splice site mutation in KIAA0586 (alias TALPID3), a known lethal ciliopathy locus in model organisms. Truncating KIAA0586 mutations were identified in two additional JBTS patients. One mutation, c.428delG (p.Arg143Lysfs*4), is unexpectedly common in the general population, and may be a major contributor to JBTS. We demonstrate KIAA0586 protein localization at the basal body in human and mouse photoreceptors, as is common for JBTS proteins, and also in pericentriolar locations. We show that loss of TALPID3 (KIAA0586) function in animal models causes abnormal tissue polarity, centrosome length and orientation, and centriolar satellites. We propose that JBTS and other ciliopathies may in part result from cell polarity defects.

Article and author information

Author details

  1. Louise A Stephen

    Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Hasan Tawamie

    Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Gemma M Davis

    Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Lars Tebbe

    Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter Nürnberg

    Cologne Center for Genomics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Gudrun Nürnberg

    Cologne Center for Genomics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Holger Thiele

    Cologne Center for Genomics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Michaela Thoenes

    Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Eugen Boltshauser

    Department of Paediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Steffen Uebe

    Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Oliver Rompel

    Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. André Reis

    Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Arif B Ekici

    Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Lynn McTeir

    Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Amy M Fraser

    Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Emma A Hall

    Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Pleasantine Mill

    Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  18. Nicolas Daudet

    UCL Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Courtney Cross

    School of Osteopathic Medicine, A.T. Still University, Mesa, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Uwe Wolfrum

    Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  21. Rami Abou Jamra

    Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  22. Megan G Davey

    Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    megan.davey@roslin.ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  23. Hanno J Bolz

    Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Talpid3 chicken lines are maintained at the Roslin Institute under UK Home Office license 60/4506 [Dr Paul Hocking], after ethical review.Animal experiments carried out at the JGU Mainz corresponded to the statement by the Association for Research in Vision and Ophthalmology (ARVO) as to care and use of animals in research.

Human subjects: Blood samples for DNA extraction were obtained with written informed consent. All investigations were conducted according to the Declaration of Helsinki, and the study was approved by the institutional review board of the Ethics Committees of the University of Erlangen-N�rnberg, the University of Bonn, and the University Hospital of Cologne.

Copyright

© 2015, Stephen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,021
    views
  • 1,096
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Louise A Stephen
  2. Hasan Tawamie
  3. Gemma M Davis
  4. Lars Tebbe
  5. Peter Nürnberg
  6. Gudrun Nürnberg
  7. Holger Thiele
  8. Michaela Thoenes
  9. Eugen Boltshauser
  10. Steffen Uebe
  11. Oliver Rompel
  12. André Reis
  13. Arif B Ekici
  14. Lynn McTeir
  15. Amy M Fraser
  16. Emma A Hall
  17. Pleasantine Mill
  18. Nicolas Daudet
  19. Courtney Cross
  20. Uwe Wolfrum
  21. Rami Abou Jamra
  22. Megan G Davey
  23. Hanno J Bolz
(2015)
TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23)
eLife 4:e08077.
https://doi.org/10.7554/eLife.08077

Share this article

https://doi.org/10.7554/eLife.08077

Further reading

    1. Developmental Biology
    2. Physics of Living Systems
    Jake Turley, Isaac V Chenchiah ... Helen Weavers
    Tools and Resources

    Cell division is fundamental to all healthy tissue growth, as well as being rate-limiting in the tissue repair response to wounding and during cancer progression. However, the role that cell divisions play in tissue growth is a collective one, requiring the integration of many individual cell division events. It is particularly difficult to accurately detect and quantify multiple features of large numbers of cell divisions (including their spatio-temporal synchronicity and orientation) over extended periods of time. It would thus be advantageous to perform such analyses in an automated fashion, which can naturally be enabled using deep learning. Hence, we develop a pipeline of deep learning models that accurately identify dividing cells in time-lapse movies of epithelial tissues in vivo. Our pipeline also determines their axis of division orientation, as well as their shape changes before and after division. This strategy enables us to analyse the dynamic profile of cell divisions within the Drosophila pupal wing epithelium, both as it undergoes developmental morphogenesis and as it repairs following laser wounding. We show that the division axis is biased according to lines of tissue tension and that wounding triggers a synchronised (but not oriented) burst of cell divisions back from the leading edge.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Leif Benner, Savannah Muron ... Brian Oliver
    Research Article

    Differentiation of female germline stem cells into a mature oocyte includes the expression of RNAs and proteins that drive early embryonic development in Drosophila. We have little insight into what activates the expression of these maternal factors. One candidate is the zinc-finger protein OVO. OVO is required for female germline viability and has been shown to positively regulate its own expression, as well as a downstream target, ovarian tumor, by binding to the transcriptional start site (TSS). To find additional OVO targets in the female germline and further elucidate OVO’s role in oocyte development, we performed ChIP-seq to determine genome-wide OVO occupancy, as well as RNA-seq comparing hypomorphic and wild type rescue ovo alleles. OVO preferentially binds in close proximity to target TSSs genome-wide, is associated with open chromatin, transcriptionally active histone marks, and OVO-dependent expression. Motif enrichment analysis on OVO ChIP peaks identified a 5’-TAACNGT-3’ OVO DNA binding motif spatially enriched near TSSs. However, the OVO DNA binding motif does not exhibit precise motif spacing relative to the TSS characteristic of RNA polymerase II complex binding core promoter elements. Integrated genomics analysis showed that 525 genes that are bound and increase in expression downstream of OVO are known to be essential maternally expressed genes. These include genes involved in anterior/posterior/germ plasm specification (bcd, exu, swa, osk, nos, aub, pgc, gcl), egg activation (png, plu, gnu, wisp, C(3)g, mtrm), translational regulation (cup, orb, bru1, me31B), and vitelline membrane formation (fs(1)N, fs(1)M3, clos). This suggests that OVO is a master transcriptional regulator of oocyte development and is responsible for the expression of structural components of the egg as well as maternally provided RNAs that are required for early embryonic development.