TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23)

  1. Louise A Stephen
  2. Hasan Tawamie
  3. Gemma M Davis
  4. Lars Tebbe
  5. Peter Nürnberg
  6. Gudrun Nürnberg
  7. Holger Thiele
  8. Michaela Thoenes
  9. Eugen Boltshauser
  10. Steffen Uebe
  11. Oliver Rompel
  12. André Reis
  13. Arif B Ekici
  14. Lynn McTeir
  15. Amy M Fraser
  16. Emma A Hall
  17. Pleasantine Mill
  18. Nicolas Daudet
  19. Courtney Cross
  20. Uwe Wolfrum
  21. Rami Abou Jamra
  22. Megan G Davey  Is a corresponding author
  23. Hanno J Bolz
  1. University of Edinburgh, United Kingdom
  2. Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
  3. Johannes Gutenberg University of Mainz, Germany
  4. University of Cologne, Germany
  5. University Hospital of Cologne, Germany
  6. University Children's Hospital Zurich, Switzerland
  7. University College London, United Kingdom
  8. A.T. Still University, United States

Abstract

Joubert syndrome (JBTS) is a severe recessive neurodevelopmental ciliopathy which can affect several organ systems. Mutations in known JBTS genes account for approximately half of the cases. By homozygosity mapping and whole-exome sequencing, we identified a novel locus, JBTS23, with a homozygous splice site mutation in KIAA0586 (alias TALPID3), a known lethal ciliopathy locus in model organisms. Truncating KIAA0586 mutations were identified in two additional JBTS patients. One mutation, c.428delG (p.Arg143Lysfs*4), is unexpectedly common in the general population, and may be a major contributor to JBTS. We demonstrate KIAA0586 protein localization at the basal body in human and mouse photoreceptors, as is common for JBTS proteins, and also in pericentriolar locations. We show that loss of TALPID3 (KIAA0586) function in animal models causes abnormal tissue polarity, centrosome length and orientation, and centriolar satellites. We propose that JBTS and other ciliopathies may in part result from cell polarity defects.

Article and author information

Author details

  1. Louise A Stephen

    Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Hasan Tawamie

    Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Gemma M Davis

    Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Lars Tebbe

    Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter Nürnberg

    Cologne Center for Genomics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Gudrun Nürnberg

    Cologne Center for Genomics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Holger Thiele

    Cologne Center for Genomics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Michaela Thoenes

    Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Eugen Boltshauser

    Department of Paediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Steffen Uebe

    Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Oliver Rompel

    Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. André Reis

    Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Arif B Ekici

    Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Lynn McTeir

    Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Amy M Fraser

    Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Emma A Hall

    Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Pleasantine Mill

    Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  18. Nicolas Daudet

    UCL Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Courtney Cross

    School of Osteopathic Medicine, A.T. Still University, Mesa, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Uwe Wolfrum

    Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  21. Rami Abou Jamra

    Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  22. Megan G Davey

    Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    megan.davey@roslin.ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  23. Hanno J Bolz

    Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Talpid3 chicken lines are maintained at the Roslin Institute under UK Home Office license 60/4506 [Dr Paul Hocking], after ethical review.Animal experiments carried out at the JGU Mainz corresponded to the statement by the Association for Research in Vision and Ophthalmology (ARVO) as to care and use of animals in research.

Human subjects: Blood samples for DNA extraction were obtained with written informed consent. All investigations were conducted according to the Declaration of Helsinki, and the study was approved by the institutional review board of the Ethics Committees of the University of Erlangen-N�rnberg, the University of Bonn, and the University Hospital of Cologne.

Copyright

© 2015, Stephen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,033
    views
  • 1,101
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Louise A Stephen
  2. Hasan Tawamie
  3. Gemma M Davis
  4. Lars Tebbe
  5. Peter Nürnberg
  6. Gudrun Nürnberg
  7. Holger Thiele
  8. Michaela Thoenes
  9. Eugen Boltshauser
  10. Steffen Uebe
  11. Oliver Rompel
  12. André Reis
  13. Arif B Ekici
  14. Lynn McTeir
  15. Amy M Fraser
  16. Emma A Hall
  17. Pleasantine Mill
  18. Nicolas Daudet
  19. Courtney Cross
  20. Uwe Wolfrum
  21. Rami Abou Jamra
  22. Megan G Davey
  23. Hanno J Bolz
(2015)
TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23)
eLife 4:e08077.
https://doi.org/10.7554/eLife.08077

Share this article

https://doi.org/10.7554/eLife.08077

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Rachael Kuintzle, Leah A Santat, Michael B Elowitz
    Research Article

    The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in Chinese hamster and mouse cell lines. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors, although Jag1-Notch1 signaling was substantially weaker than other ligand-receptor combinations. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Kara A Nelson, Kari F Lenhart ... Stephen DiNardo
    Research Article

    Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.