Paradoxical resistance of multiple myeloma to proteasome inhibitors by decreased levels of 19S proteasomal subunits

  1. Diego Acosta-Alvear
  2. Min Y Cho
  3. Thomas Wild
  4. Tonia J Buchholz
  5. Alana G Lerner
  6. Olga Simakova
  7. Jamie Hahn
  8. Neha Korde
  9. Ola Landgren
  10. Irina Maric
  11. Chunaram Choudhary
  12. Peter Walter
  13. Jonathan S Weissman  Is a corresponding author
  14. Martin Kampmann
  1. University of California, San Francisco, United States
  2. University of Copenhagen, Denmark
  3. Onyx Pharmaceuticals, Inc. an Amgen subsidiary, United States
  4. National Institutes of Health, United States
  5. National Cancer Institute, United States

Abstract

Hallmarks of cancer, including rapid growth and aneuploidy, can result in non-oncogene addiction to the proteostasis network that can be exploited clinically. The defining example is the exquisite sensitivity of multiple myeloma (MM) to 20S proteasome inhibitors, such as carfilzomib. However, MM patients invariably acquire resistance to these drugs. Using a next-generation shRNA platform, we found that proteostasis factors, including chaperones and stress-response regulators, controlled the response to carfilzomib. Paradoxically, 19S proteasome regulator knockdown induced resistance to carfilzomib in MM and non-MM cells. 19S subunit knockdown did not affect the activity of the 20S subunits targeted by carfilzomib nor their inhibition by the drug, suggesting an alternative mechanism, such as the selective accumulation of protective factors. In MM patients, lower 19S levels predicted a diminished response to carfilzomib-based therapies. Together, our findings suggest that an understanding of network rewiring can inform development of new combination therapies to overcome drug resistance.

Article and author information

Author details

  1. Diego Acosta-Alvear

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Min Y Cho

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Thomas Wild

    The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  4. Tonia J Buchholz

    Onyx Pharmaceuticals, Inc. an Amgen subsidiary, South San Francisco, United States
    Competing interests
    Tonia J Buchholz, is an employee of Onyx Pharmaceuticals, an Amgen subsidiary.
  5. Alana G Lerner

    Onyx Pharmaceuticals, Inc. an Amgen subsidiary, South San Francisco, United States
    Competing interests
    Alana G Lerner, is an employee of Onyx Pharmaceuticals, an Amgen subsidiary.
  6. Olga Simakova

    Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  7. Jamie Hahn

    Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  8. Neha Korde

    Multiple Myeloma Section, Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  9. Ola Landgren

    Multiple Myeloma Section, Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  10. Irina Maric

    Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  11. Chunaram Choudhary

    The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  12. Peter Walter

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  13. Jonathan S Weissman

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    For correspondence
    Jonathan.Weissman@ucsf.edu
    Competing interests
    No competing interests declared.
  14. Martin Kampmann

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Raymond J Deshaies, Howard Hughes Medical Institute, California Institute of Technology, United States

Ethics

Human subjects: The registered clinical research trial (NCT01402284) was approved by the National Cancer Institute (NCI) Institutional Review Board (IRB) and complied with the Declaration of Helsinki, the International Conference on Harmonization, and the Guidelines for Good Clinical Practice. All enrolled patients meeting criteria were consented with an IRB-approved document

Version history

  1. Received: April 16, 2015
  2. Accepted: August 31, 2015
  3. Accepted Manuscript published: September 1, 2015 (version 1)
  4. Version of Record published: October 19, 2015 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,411
    views
  • 1,021
    downloads
  • 81
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Diego Acosta-Alvear
  2. Min Y Cho
  3. Thomas Wild
  4. Tonia J Buchholz
  5. Alana G Lerner
  6. Olga Simakova
  7. Jamie Hahn
  8. Neha Korde
  9. Ola Landgren
  10. Irina Maric
  11. Chunaram Choudhary
  12. Peter Walter
  13. Jonathan S Weissman
  14. Martin Kampmann
(2015)
Paradoxical resistance of multiple myeloma to proteasome inhibitors by decreased levels of 19S proteasomal subunits
eLife 4:e08153.
https://doi.org/10.7554/eLife.08153

Share this article

https://doi.org/10.7554/eLife.08153

Further reading

    1. Cell Biology
    2. Neuroscience
    Georg Kislinger, Gunar Fabig ... Martina Schifferer
    Tools and Resources

    Like other volume electron microscopy approaches, automated tape-collecting ultramicrotomy (ATUM) enables imaging of serial sections deposited on thick plastic tapes by scanning electron microscopy (SEM). ATUM is unique in enabling hierarchical imaging and thus efficient screening for target structures, as needed for correlative light and electron microscopy. However, SEM of sections on tape can only access the section surface, thereby limiting the axial resolution to the typical size of cellular vesicles with an order of magnitude lower than the acquired xy resolution. In contrast, serial-section electron tomography (ET), a transmission electron microscopy-based approach, yields isotropic voxels at full EM resolution, but requires deposition of sections on electron-stable thin and fragile films, thus making screening of large section libraries difficult and prone to section loss. To combine the strength of both approaches, we developed ‘ATUM-Tomo, a hybrid method, where sections are first reversibly attached to plastic tape via a dissolvable coating, and after screening detached and transferred to the ET-compatible thin films. As a proof-of-principle, we applied correlative ATUM-Tomo to study ultrastructural features of blood-brain barrier (BBB) leakiness around microthrombi in a mouse model of traumatic brain injury. Microthrombi and associated sites of BBB leakiness were identified by confocal imaging of injected fluorescent and electron-dense nanoparticles, then relocalized by ATUM-SEM, and finally interrogated by correlative ATUM-Tomo. Overall, our new ATUM-Tomo approach will substantially advance ultrastructural analysis of biological phenomena that require cell- and tissue-level contextualization of the finest subcellular textures.

    1. Cell Biology
    KC Farrell, Jennifer T Wang, Tim Stearns
    Research Article

    The spindle assembly checkpoint (SAC) temporally regulates mitosis by preventing progression from metaphase to anaphase until all chromosomes are correctly attached to the mitotic spindle. Centrosomes refine the spatial organization of the mitotic spindle at the spindle poles. However, centrosome loss leads to elongated mitosis, suggesting that centrosomes also inform the temporal organization of mitosis in mammalian cells. Here, we find that the mitotic delay in acentrosomal cells is enforced by the SAC in a MPS1-dependent manner, and that a SAC-dependent mitotic delay is required for bipolar cell division to occur in acentrosomal cells. Although acentrosomal cells become polyploid, polyploidy is not sufficient to cause dependency on a SAC-mediated delay to complete cell division. Rather, the division failure in absence of MPS1 activity results from mitotic exit occurring before acentrosomal spindles can become bipolar. Furthermore, prevention of centrosome separation suffices to make cell division reliant on a SAC-dependent mitotic delay. Thus, centrosomes and their definition of two spindle poles early in mitosis provide a ‘timely two-ness’ that allows cell division to occur in absence of a SAC-dependent mitotic delay.