1. Hillary Hadley   Is a corresponding author
  2. Lisa Scott   Is a corresponding author
  1. University of Massachusetts Amherst, United States

Human faces are an important part of social interactions. We use them to recognize a friend, to gauge someone's mood, or to figure out where to direct our attention. But before engaging in any of these activities, we must first identify a face as a face.

The fundamental question of how a perceptual system, such as the one underlying face recognition, becomes organized in the brain is important for understanding how changes in the brain lead to changes in behavior. Studying face perception in developing infants could help us to understand the parts of the brain that contribute to adult face perception. It might also reveal how face-processing abilities can be impaired in some populations, such as people with Autism.

In adults, the right hemisphere of the brain is critical for recognizing faces. Damage to the right hemisphere, but not the left hemisphere, can impair face recognition. Moreover, the right hemisphere produces larger brain responses than the left hemisphere when a face is seen. This has been witnessed using two different neuroimaging methods. The first, called functional magnetic resonance imaging (fMRI), measures the flow of blood around the brain and relates this to brain activity (e.g., Kanwisher et al., 1997). The second directly measures event-related potentials (ERPs)—the electrical response of a brain region to a stimulus (e.g., Rossion et al., 2003).

In children, there is also evidence that the right and left hemispheres of the brain respond differently to faces (Scherf et al., 2007). Recently it was reported that the response of the right hemisphere to faces is intricately linked to changes that occur in the left hemisphere when children learn to read (Dundas et al., 2014). To date, the majority of studies on infants (who are too young to read) have found no significant differences in how the two sides of the brain respond to faces (e.g., de Haan and Nelson, 1999; Gliga and Dehaene-Lambertz, 2007). However, one group did find response differences between hemispheres when comparing faces to markedly less complex stimuli (patterns of colored dots) (Tzourio-Mazoyer et al., 2002).

Now, in eLife, Adélaïde de Heering and Bruno Rossion from the University of Louvain have used a fast periodic visual stimulation (FPVS) approach to explore face perception in a group of infants aged between four and six months (de Heering and Rossion, 2015). This approach involves presenting images at a rapid, fixed rate in order to induce brain responses that occur at the same rate (often defined as ‘steady-state visual evoked potentials’, SSVEPs; Regan, 1966; for a review, see Norcia et al., 2015).

de Heering and Rossion report that, in the brains of these infants, faces are represented as a distinct category of objects, separate from other categories of objects such as plants or man-made objects. This distinction can be seen most prominently in the response recorded over the right occipito-temporal brain region, which is near the back of the brain. Importantly, faces that vary in size, viewpoint and features (such as the expression and the gender of the faces) are all categorized as faces. This is even the case when the images include naturalistic backgrounds.

These findings provide evidence that by the time they are six months old, infants possess a relatively robust ability to identify that faces are different from objects, and can do so in a realistic context. Moreover, the larger face-related brain responses recorded over the right hemisphere suggest that the right hemisphere of the brain has begun to preferentially respond to faces by six months of age. These findings also complement previous behavioral and ERP work suggesting that infants can distinguish between faces and objects in the first year of life (for a review, see Scott and Nelson, 2004).

Although this technique has been successfully used in infant studies of low-level vision (e.g., Braddick et al., 1986), de Heering and Rossion are among the first researchers to demonstrate the effectiveness of the FPVS technique using complex images in infant research. This is an important addition to the developmental scientist's toolbox and will greatly expand our ability to characterize brain development in infants even before they begin to talk. This technique has been successfully used in a variety of adult investigations but to our knowledge only one other published study reports results from this method with infants (Farzin et al., 2012).

The fact that the FPVS technique can be applied to infant populations has a number of benefits for researchers. Infants can be exposed to hundreds of trials and several conditions within minutes, and no verbal or motor response is required. This large amount of data, collected in a short period of time, results in a higher of proportion data suitable for analysis than in studies using behavior or standard ERP approaches. The increased number of trials also allows researchers to use a variety of visual stimuli that vary in shape, size and orientation, leading to conclusions that are more generalizeable and relevant to real-world situations. Relative to other methods, the FPVS method measures infant brain responses objectively, allowing for precise testing of predictions and easy comparisons across investigations. Finally, the FPVS method measures how the brain tells the difference between various stimulus conditions and provides a direct link between this response and the behavioral tasks commonly used to study infant perception, learning and memory.

References

    1. Kanwisher N
    2. McDermott J
    3. Chun MM
    (1997)
    The fusiform face area: a module in human extrastriate cortex specialized for face perception
    Journal of Neuroscience 17:4302–4311.
    1. Scott LS
    2. Nelson CA
    (2004)
    Review of Psychiatry Series
    Review of Psychiatry Series, Volume 23, American Psychiatric Publishing.

Article and author information

Author details

  1. Hillary Hadley

    Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, United States
    For correspondence
    hhadley@psych.umass.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Lisa Scott

    Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, United States
    For correspondence
    lscott@psych.umass.edu
    Competing interests
    The authors declare that no competing interests exist.

Publication history

  1. Version of Record published: June 2, 2015 (version 1)

Copyright

© 2015, Hadley and Scott

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,658
    views
  • 120
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hillary Hadley
  2. Lisa Scott
(2015)
Face Recognition: Babies get it right
eLife 4:e08232.
https://doi.org/10.7554/eLife.08232

Further reading

    1. Neuroscience
    Olujolagbe Layinka, Luca D Hargitai ... Florence YN Leung
    Feature Article

    Improving our understanding of autism, ADHD, dyslexia and other neurodevelopmental conditions requires collaborations between genetics, psychiatry, the social sciences and other fields of research.

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.