BAG2 promotes tumorigenesis through enhancing mutant p53 protein levels and function

  1. Xuetian Yue
  2. Yuhan Zhao
  3. Juan Liu
  4. Cen Zhang
  5. Haiyang Yu
  6. Jiabei Wang
  7. Tongsen Zheng
  8. Lianxin Liu
  9. Jun Li
  10. Zhaohui Feng
  11. Wenwei Hu  Is a corresponding author
  1. Rutgers University Newark Campus, United States
  2. Harbin Medical University, China

Abstract

Tumor suppressor p53 is the most frequently mutated gene in tumors. Many mutant p53 (mutp53) proteins promote tumorigenesis through the gain-of-function (GOF) mechanism. Mutp53 proteins often accumulate to high levels in tumors, which is critical for mutp53 GOF. Its underlying mechanism is poorly understood. Here, we found that BAG2, a protein of Bcl-2 associated athanogene (BAG) family, promotes mutp53 accumulation and GOF in tumors. Mechanically, BAG2 binds to mutp53 and translocates to the nucleus to inhibit the MDM2-mutp53 interaction, and MDM2-mediated ubiquitination and degradation of mutp53. Thus, BAG2 promotes mutp53 accumulation and GOF in tumor growth, metastasis and chemoresistance. BAG2 is frequently overexpressed in tumors. BAG2 overexpression is associated with poor prognosis in patients and mutp53 accumulation in tumors. These findings revealed a novel and important mechanism for mutp53 accumulation and GOF in tumors, and also uncovered an important role of BAG2 in tumorigenesis through promoting mutp53 accumulation and GOF.

Article and author information

Author details

  1. Xuetian Yue

    Rutgers University Newark Campus, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuhan Zhao

    Rutgers University Newark Campus, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Juan Liu

    Rutgers University Newark Campus, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cen Zhang

    Rutgers University Newark Campus, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Haiyang Yu

    Rutgers University Newark Campus, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiabei Wang

    Rutgers University Newark Campus, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tongsen Zheng

    Rutgers University Newark Campus, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lianxin Liu

    Key laboratory of hepatosplenic surgery, Harbin Medical University, Harbin, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Jun Li

    Rutgers University Newark Campus, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhaohui Feng

    Rutgers University Newark Campus, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Wenwei Hu

    Rutgers University Newark Campus, New Brunswick, United States
    For correspondence
    wh221@cinj.rutgers.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (#I13-028) of Rutgers University.

Copyright

© 2015, Yue et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,981
    views
  • 674
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xuetian Yue
  2. Yuhan Zhao
  3. Juan Liu
  4. Cen Zhang
  5. Haiyang Yu
  6. Jiabei Wang
  7. Tongsen Zheng
  8. Lianxin Liu
  9. Jun Li
  10. Zhaohui Feng
  11. Wenwei Hu
(2015)
BAG2 promotes tumorigenesis through enhancing mutant p53 protein levels and function
eLife 4:e08401.
https://doi.org/10.7554/eLife.08401

Share this article

https://doi.org/10.7554/eLife.08401

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Pyae Hein Htet, Edward Avezov, Eric Lauga
    Research Article

    The endoplasmic reticulum (ER), the largest cellular compartment, harbours the machinery for the biogenesis of secretory proteins and lipids, calcium storage/mobilisation, and detoxification. It is shaped as layered membranous sheets interconnected with a network of tubules extending throughout the cell. Understanding the influence of the ER morphology dynamics on molecular transport may offer clues to rationalising neuro-pathologies caused by ER morphogen mutations. It remains unclear, however, how the ER facilitates its intra-luminal mobility and homogenises its content. It has been recently proposed that intra-luminal transport may be enabled by active contractions of ER tubules. To surmount the barriers to empirical studies of the minuscule spatial and temporal scales relevant to ER nanofluidics, here we exploit the principles of viscous fluid dynamics to generate a theoretical physical model emulating in silico the content motion in actively contracting nanoscopic tubular networks. The computational model reveals the luminal particle speeds, and their impact in facilitating active transport, of the active contractile behaviour of the different ER components along various time–space parameters. The results of the model indicate that reproducing transport with velocities similar to those reported experimentally in single-particle tracking would require unrealistically high values of tubule contraction site length and rate. Considering further nanofluidic scenarios, we show that width contractions of the ER’s flat domains (perinuclear sheets) generate local flows with only a short-range effect on luminal transport. Only contractions of peripheral sheets can reproduce experimental measurements, provided they are able to contract fast enough.

    1. Cell Biology
    Chenlu Kang, Pengcheng Chen ... Congying Wu
    Research Article

    Cell migration towards stiff substrates has been coined as durotaxis and implicated in development, wound healing, and cancer, where complex interplays between immune and non-immune cells are present. Compared to the emerging mechanisms underlying the strongly adhesive mesenchymal durotaxis, little is known about whether immune cells - migrating in amoeboid mode - could follow mechanical cues. Here, we develop an imaging-based confined migration device with a stiffness gradient. By tracking live cell trajectory and analyzing the directionality of T cells and neutrophils, we observe that amoeboid cells can durotax. We further delineate the underlying mechanism to involve non-muscle myosin IIA (NMIIA) polarization towards the soft-matrix-side but may not require differential actin flow up- or down-stiffness gradient. Using the protista Dictyostelium, we demonstrate the evolutionary conservation of amoeboid durotaxis. Finally, these experimental phenomena are theoretically captured by an active gel model capable of mechanosensing. Collectively, these results may shed new lights on immune surveillance and recently identified confined migration of cancer cells, within the mechanically inhomogeneous tumor microenvironment or the inflamed fibrotic tissues.