CryoEM and computer simulations reveal a novel kinase conformational switch in bacterial chemotaxis signaling

  1. C Keith Cassidy
  2. Benjamin A Himes
  3. Frances J Alvarez
  4. Jun Ma
  5. Gongpu Zhao
  6. Juan R Perilla
  7. Klaus Schulten
  8. Peijun Zhang  Is a corresponding author
  1. University of Illinois at Urbana-Champaign, United States
  2. University of Pittsburgh School of Medicine, United States

Abstract

Chemotactic responses in bacteria require large, highly ordered arrays of sensory proteins to mediate the signal transduction that ultimately controls cell motility. A mechanistic understanding of the molecular events underlying signaling, however, has been hampered by the lack of a high-resolution structural description of the extended array. Here, we report a novel reconstitution of the array, involving the receptor signaling domain, histidine kinase CheA, and adaptor protein CheW, as well as a density map of the core-signaling unit at 11.3 Å resolution, obtained by cryo-electron tomography and sub-tomogram averaging. Extracting key structural constraints from our density map, we computationally construct and refine an atomic model of the core array structure, exposing novel interfaces between the component proteins. Using all-atom molecular dynamics simulations, we further reveal a distinctive conformational change in CheA. Mutagenesis and chemical cross-linking experiments confirm the importance of the conformational dynamics of CheA for chemotactic function.

Article and author information

Author details

  1. C Keith Cassidy

    Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin A Himes

    Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Frances J Alvarez

    Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jun Ma

    Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gongpu Zhao

    Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Juan R Perilla

    Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Klaus Schulten

    Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Peijun Zhang

    Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    For correspondence
    pez7@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Axel T Brunger, Stanford University, United States

Version history

  1. Received: April 29, 2015
  2. Accepted: November 18, 2015
  3. Accepted Manuscript published: November 19, 2015 (version 1)
  4. Version of Record published: December 31, 2015 (version 2)

Copyright

© 2015, Cassidy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,776
    views
  • 992
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. C Keith Cassidy
  2. Benjamin A Himes
  3. Frances J Alvarez
  4. Jun Ma
  5. Gongpu Zhao
  6. Juan R Perilla
  7. Klaus Schulten
  8. Peijun Zhang
(2015)
CryoEM and computer simulations reveal a novel kinase conformational switch in bacterial chemotaxis signaling
eLife 4:e08419.
https://doi.org/10.7554/eLife.08419

Share this article

https://doi.org/10.7554/eLife.08419

Further reading

    1. Structural Biology and Molecular Biophysics
    Hitendra Negi, Aravind Ravichandran ... Ranabir Das
    Research Article Updated

    The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Kien Xuan Ngo, Huong T Vu ... Taro Uyeda
    Research Article

    The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0–6.3 nm) than the MAD within typical helices (4.3–5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.