A genetic toolkit for tagging intronic MiMIC containing genes

  1. Sonal Nagarkar-Jaiswal
  2. Steven Z DeLuca
  3. Pei-Tseng Lee
  4. Wen-Wen Lin
  5. Hongling Pan
  6. Zhongyuan Zuo
  7. Jiangxing Lv
  8. Allan C Spradling
  9. Hugo J Bellen  Is a corresponding author
  1. Howard Hughes Medical Institute, Baylor College of Medicine, United States
  2. Howard Hughes Medical Institute, Carnegie Institution for Science, United States
  3. Baylor College of Medicine, United States

Abstract

Previously we described a large collection of MiMICs that contain two phiC31 recombinase target sites and allow the generation of a new exon that encodes a protein tag when the MiMIC (Minos Mediated Integration Cassette) is inserted in a codon intron (Nagarkar-Jaiswal et al., 2015). These modified genes permit numerous applications including assessment of protein expression pattern, identification of protein interaction partners by immunoprecipitation followed by mass spec, and reversible removal of the tagged protein in any tissue. At present, these conversions remain time and labor-intensive as they require embryos to be injected with plasmid DNA containing the exon tag. Here we describe a simple and reliable genetic strategy to tag genes/proteins that contain MiMIC insertions using an integrated exon encoding GFP flanked by FRT sequences. We document the efficiency and tag 60 mostly uncharacterized genes.

Article and author information

Author details

  1. Sonal Nagarkar-Jaiswal

    Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Steven Z DeLuca

    Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pei-Tseng Lee

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wen-Wen Lin

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hongling Pan

    Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zhongyuan Zuo

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jiangxing Lv

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Allan C Spradling

    Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hugo J Bellen

    Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
    For correspondence
    hbellen@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Nagarkar-Jaiswal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,270
    views
  • 1,851
    downloads
  • 131
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sonal Nagarkar-Jaiswal
  2. Steven Z DeLuca
  3. Pei-Tseng Lee
  4. Wen-Wen Lin
  5. Hongling Pan
  6. Zhongyuan Zuo
  7. Jiangxing Lv
  8. Allan C Spradling
  9. Hugo J Bellen
(2015)
A genetic toolkit for tagging intronic MiMIC containing genes
eLife 4:e08469.
https://doi.org/10.7554/eLife.08469

Share this article

https://doi.org/10.7554/eLife.08469

Further reading

    1. Cell Biology
    Xue Yang, Chuyi Han ... Fanyuan Yu
    Research Article

    Platelet-derived growth factor receptor alpha (PDGFR-α) activity is crucial in the process of dental and periodontal mesenchyme regeneration facilitated by autologous platelet concentrates (APCs), such as platelet-rich fibrin (PRF), platelet-rich plasma (PRP) and concentrated growth factors (CGF), as well as by recombinant PDGF drugs. However, it is largely unclear about the physiological patterns and cellular fate determinations of PDGFR-α+ cells in the homeostasis maintaining of adult dental and periodontal mesenchyme. We previously identified NFATc1 expressing PDGFR-α+ cells as a subtype of skeletal stem cells (SSCs) in limb bone in mice, but their roles in dental and periodontal remain unexplored. To this end, in the present study we investigated the spatiotemporal atlas of NFATc1+ and PDGFR-α+ cells residing in dental and periodontal mesenchyme in mice, their capacity for progeny cell generation, and their inclusive, exclusive and hierarchical relations in homeostasis. We utilized CRISPR/Cas9-mediated gene editing to generate two dual recombination systems, which were Cre-loxP and Dre-rox combined intersectional and exclusive reporters respectively, to concurrently demonstrate the inclusive, exclusive, and hierarchical distributions of NFATc1+ and PDGFR-α+ cells and their lineage commitment. By employing the state-of-the-art transgenic lineage tracing techniques in cooperating with tissue clearing-based advanced imaging and three-dimensional slices reconstruction, we systematically mapped the distribution atlas of NFATc1+ and PDGFR-α+ cells in dental and periodontal mesenchyme and tracked their in vivo fate trajectories in mice. Our findings extend current understanding of NFATc1+ and PDGFR-α+ cells in dental and periodontal mesenchyme homeostasis, and furthermore enhance our comprehension of their sustained therapeutic impact for future clinical investigations.

    1. Cell Biology
    2. Neuroscience
    Jun Sun, Francisca Rojo-Cortes ... Alicia Hidalgo
    Research Article

    Experience shapes the brain as neural circuits can be modified by neural stimulation or the lack of it. The molecular mechanisms underlying structural circuit plasticity and how plasticity modifies behaviour are poorly understood. Subjective experience requires dopamine, a neuromodulator that assigns a value to stimuli, and it also controls behaviour, including locomotion, learning, and memory. In Drosophila, Toll receptors are ideally placed to translate experience into structural brain change. Toll-6 is expressed in dopaminergic neurons (DANs), raising the intriguing possibility that Toll-6 could regulate structural plasticity in dopaminergic circuits. Drosophila neurotrophin-2 (DNT-2) is the ligand for Toll-6 and Kek-6, but whether it is required for circuit structural plasticity was unknown. Here, we show that DNT-2-expressing neurons connect with DANs, and they modulate each other. Loss of function for DNT-2 or its receptors Toll-6 and kinase-less Trk-like kek-6 caused DAN and synapse loss, impaired dendrite growth and connectivity, decreased synaptic sites, and caused locomotion deficits. In contrast, over-expressed DNT-2 increased DAN cell number, dendrite complexity, and promoted synaptogenesis. Neuronal activity modified DNT-2, increased synaptogenesis in DNT-2-positive neurons and DANs, and over-expression of DNT-2 did too. Altering the levels of DNT-2 or Toll-6 also modified dopamine-dependent behaviours, including locomotion and long-term memory. To conclude, a feedback loop involving dopamine and DNT-2 highlighted the circuits engaged, and DNT-2 with Toll-6 and Kek-6 induced structural plasticity in this circuit modifying brain function and behaviour.