1. Biochemistry and Chemical Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Structure of a bacterial RNA polymerase holoenzyme open promoter complex

  1. Brian Bae
  2. Andrey Feklistov
  3. Agnieszka Lass-Napiorkowska
  4. Robert Landick
  5. Seth A Darst  Is a corresponding author
  1. The Rockefeller University, United States
  2. Saint Louis University School of Medicine, United States
  3. University of Wisconsin-madison, United States
Research Article
  • Cited 100
  • Views 16,008
  • Annotations
Cite this article as: eLife 2015;4:e08504 doi: 10.7554/eLife.08504

Abstract

Initiation of transcription is a primary means for controlling gene expression. In bacteria, the RNA polymerase (RNAP) holoenzyme binds and unwinds promoter DNA, forming the transcription bubble of the open promoter complex (RPo). We have determined crystal structures, refined to 4.14 Å-resolution, of RPo containing Thermus aquaticus RNAP holoenzyme and promoter DNA that includes the full transcription bubble. The structures, combined with biochemical analyses, reveal key features supporting the formation and maintenance of the double-strand/single-strand DNA junction at the upstream edge of the -10 element where bubble formation initiates. The results also reveal RNAP interactions with duplex DNA just upstream of the -10 element and potential protein/DNA interactions that direct the DNA template strand into the RNAP active site. Addition of an RNA primer to yield a 4 base-pair post-translocated RNA:DNA hybrid mimics an initially transcribing complex at the point where steric clash initiates abortive initiation and σA dissociation.

Article and author information

Author details

  1. Brian Bae

    Laboratory for Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrey Feklistov

    Laboratory for Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Agnieszka Lass-Napiorkowska

    Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert Landick

    Department of Biochemistry, University of Wisconsin-madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Seth A Darst

    Laboratory for Molecular Biophysics, The Rockefeller University, New York, United States
    For correspondence
    darst@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Stephen C Harrison, Harvard Medical School, United States

Publication history

  1. Received: May 4, 2015
  2. Accepted: September 3, 2015
  3. Accepted Manuscript published: September 8, 2015 (version 1)
  4. Version of Record published: October 5, 2015 (version 2)

Copyright

© 2015, Bae et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 16,008
    Page views
  • 1,180
    Downloads
  • 100
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Willow Coyote-Maestas, James S Fraser
    Insight

    A new way to alter the genome of bacteriophages helps produce large libraries of variants, allowing these bacteria-killing viruses to be designed to target species harmful to human health.

    1. Biochemistry and Chemical Biology
    Phil Huss et al.
    Research Article Updated

    The interaction between a bacteriophage and its host is mediated by the phage's receptor binding protein (RBP). Despite its fundamental role in governing phage activity and host range, molecular rules of RBP function remain a mystery. Here, we systematically dissect the functional role of every residue in the tip domain of T7 phage RBP (1660 variants) by developing a high-throughput, locus-specific, phage engineering method. This rich dataset allowed us to cross compare functional profiles across hosts to precisely identify regions of functional importance, many of which were previously unknown. Substitution patterns showed host-specific differences in position and physicochemical properties of mutations, revealing molecular adaptation to individual hosts. We discovered gain-of-function variants against resistant hosts and host-constricting variants that eliminated certain hosts. To demonstrate therapeutic utility, we engineered highly active T7 variants against a urinary tract pathogen. Our approach presents a generalized framework for characterizing sequence–function relationships in many phage–bacterial systems.