Unified quantitative characterization of epithelial tissue development

  1. Boris Guirao
  2. Stéphane Rigaud
  3. Floris Bosveld
  4. Anaïs Bailles
  5. Jesus Lopez-Gay
  6. Shuji Ishihara
  7. Kaoru Sugimura
  8. François Graner
  9. Yohanns Bellaïche  Is a corresponding author
  1. Institut Curie, France
  2. Aix Marseille Université, France
  3. Meiji University, Japan
  4. Kyoto University, Japan
  5. Univsersité Paris-Diderot, France

Abstract

Understanding the mechanisms regulating development requires a quantitative characterization of cell processes including cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that unifies and relates the characterizations of each individual cell process and of epithelial tissue growth and morphogenesis during development. We applied this formalism to two Drosophila proliferative tissues and by analyzing more than 9 million cell contours, we obtained comprehensive statistical maps of morphogenetic events linking cell and tissue scale dynamics. By quantifying each cell process separately in both wild-type and mutant conditions, we analyzed the roles of cell proliferation and its interplay with cell rearrangements and cell shape changes. Furthermore, by combining the formalism with mechanical stress measurement, we uncovered unexpected interplays between the patterns of tissue elongation, cell division orientation and stress orientations. Collectively, our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development.

Article and author information

Author details

  1. Boris Guirao

    Polarity, Division and Morphogenesis Team, Génétique et biologie du développement, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Stéphane Rigaud

    Polarity, Division and Morphogenesis Team, Génétique et biologie du développement, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Floris Bosveld

    Polarity, Division and Morphogenesis Team, Génétique et biologie du développement, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Anaïs Bailles

    Institut de Biologie du Développement de Marseille, Aix Marseille Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Jesus Lopez-Gay

    Polarity, Division and Morphogenesis Team, Génétique et biologie du développement, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Shuji Ishihara

    Department of Physics, School of Science and Technology, Meiji University, Kanagawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Kaoru Sugimura

    Institute for Integrated Cell-Material Sceinces, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. François Graner

    Laboratoire Matière et Systèmes Complexes, Univsersité Paris-Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Yohanns Bellaïche

    Polarity, Division and Morphogenesis Team, Génétique et biologie du développement, Institut Curie, Paris, France
    For correspondence
    yohanns.bellaiche@curie.fr
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Guirao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,936
    views
  • 1,766
    downloads
  • 180
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Boris Guirao
  2. Stéphane Rigaud
  3. Floris Bosveld
  4. Anaïs Bailles
  5. Jesus Lopez-Gay
  6. Shuji Ishihara
  7. Kaoru Sugimura
  8. François Graner
  9. Yohanns Bellaïche
(2015)
Unified quantitative characterization of epithelial tissue development
eLife 4:e08519.
https://doi.org/10.7554/eLife.08519

Share this article

https://doi.org/10.7554/eLife.08519

Further reading

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Tingting Yang, Marko S Chavez ... Mohamed Y El-Naggar
    Research Article

    Filamentous multicellular cable bacteria perform centimeter-scale electron transport in a process that couples oxidation of an electron donor (sulfide) in deeper sediment to the reduction of an electron acceptor (oxygen or nitrate) near the surface. While this electric metabolism is prevalent in both marine and freshwater sediments, detailed electronic measurements of the conductivity previously focused on the marine cable bacteria (Candidatus Electrothrix), rather than freshwater cable bacteria, which form a separate genus (Candidatus Electronema) and contribute essential geochemical roles in freshwater sediments. Here, we characterize the electron transport characteristics of Ca. Electronema cable bacteria from Southern California freshwater sediments. Current–voltage measurements of intact cable filaments bridging interdigitated electrodes confirmed their persistent conductivity under a controlled atmosphere and the variable sensitivity of this conduction to air exposure. Electrostatic and conductive atomic force microscopies mapped out the characteristics of the cell envelope’s nanofiber network, implicating it as the conductive pathway in a manner consistent with previous findings in marine cable bacteria. Four-probe measurements of microelectrodes addressing intact cables demonstrated nanoampere currents up to 200 μm lengths at modest driving voltages, allowing us to quantify the nanofiber conductivity at 0.1 S/cm for freshwater cable bacteria filaments under our measurement conditions. Such a high conductivity can support the remarkable sulfide-to-oxygen electrical currents mediated by cable bacteria in sediments. These measurements expand the knowledgebase of long-distance electron transport to the freshwater niche while shedding light on the underlying conductive network of cable bacteria.

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Natanael Spisak, Gabriel Athènes ... Aleksandra M Walczak
    Tools and Resources

    B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution and dynamics. We present HILARy (High-precision Inference of Lineages in Antibody Repertoires), an efficient, fast and precise method to identify clonal families from single- or paired-chain repertoire sequencing datasets. HILARy combines probabilistic models that capture the receptor generation and selection statistics with adapted clustering methods to achieve consistently high inference accuracy. It automatically leverages the phylogenetic signal of shared mutations in difficult repertoire subsets. Exploiting the high sensitivity of the method, we find the statistics of evolutionary properties such as the site frequency spectrum and 𝑑𝑁∕𝑑𝑆 ratio do not depend on the junction length. We also identify a broad range of selection pressures spanning two orders of magnitude.