Unified quantitative characterization of epithelial tissue development

  1. Boris Guirao
  2. Stéphane U Rigaud
  3. Floris Bosveld
  4. Anaïs Bailles
  5. Jesus Lopez-Gay
  6. Shuji Ishihara
  7. Kaoru Sugimura
  8. François Graner
  9. Yohanns Bellaïche  Is a corresponding author
  1. Institut Curie, France
  2. Aix Marseille Université, France
  3. Meiji University, Japan
  4. Kyoto University, Japan
  5. Univsersité Paris-Diderot, France

Abstract

Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantifed separately all morphogenetic events in the Drosophila wing and dorsal thorax pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all signifcantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development.

Article and author information

Author details

  1. Boris Guirao

    Polarity, Division and Morphogenesis Team, Génétique et biologie du développement, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Stéphane U Rigaud

    Polarity, Division and Morphogenesis Team, Génétique et biologie du développement, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Floris Bosveld

    Polarity, Division and Morphogenesis Team, Génétique et biologie du développement, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Anaïs Bailles

    Institut de Biologie du Développement de Marseille, Aix Marseille Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Jesus Lopez-Gay

    Polarity, Division and Morphogenesis Team, Génétique et biologie du développement, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Shuji Ishihara

    Department of Physics, School of Science and Technology, Meiji University, Kanagawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Kaoru Sugimura

    Institute for Integrated Cell-Material Sceinces, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. François Graner

    Laboratoire Matière et Systèmes Complexes, Univsersité Paris-Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Yohanns Bellaïche

    Polarity, Division and Morphogenesis Team, Génétique et biologie du développement, Institut Curie, Paris, France
    For correspondence
    yohanns.bellaiche@curie.fr
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Publication history

  1. Received: May 6, 2015
  2. Accepted: November 3, 2015
  3. Accepted Manuscript published: December 12, 2015 (version 1)
  4. Accepted Manuscript updated: December 15, 2015 (version 2)
  5. Version of Record published: March 22, 2016 (version 3)

Copyright

© 2015, Guirao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,568
    Page views
  • 1,580
    Downloads
  • 104
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Boris Guirao
  2. Stéphane U Rigaud
  3. Floris Bosveld
  4. Anaïs Bailles
  5. Jesus Lopez-Gay
  6. Shuji Ishihara
  7. Kaoru Sugimura
  8. François Graner
  9. Yohanns Bellaïche
(2015)
Unified quantitative characterization of epithelial tissue development
eLife 4:e08519.
https://doi.org/10.7554/eLife.08519

Further reading

    1. Medicine
    2. Physics of Living Systems
    Dmitry Postnov et al.
    Research Article Updated

    Internephron interaction is fundamental for kidney function. Earlier studies have shown that nephrons signal to each other, synchronize over short distances, and potentially form large synchronized clusters. Such clusters would play an important role in renal autoregulation, but due to the technological limitations, their presence is yet to be confirmed. In the present study, we introduce an approach for high-resolution laser speckle imaging of renal blood flow and apply it to estimate the frequency and phase differences in rat kidney microcirculation under different conditions. The analysis unveiled the spatial and temporal evolution of synchronized blood flow clusters of various sizes, including the formation of large (>90 vessels) and long-lived clusters (>10 periods) locked at the frequency of the tubular glomerular feedback mechanism. Administration of vasoactive agents caused significant changes in the synchronization patterns and, thus, in nephrons’ co-operative dynamics. Specifically, infusion of vasoconstrictor angiotensin II promoted stronger synchronization, while acetylcholine caused complete desynchronization. The results confirm the presence of the local synchronization in the renal microcirculatory blood flow and that it changes depending on the condition of the vascular network and the blood pressure, which will have further implications for the role of such synchronization in pathologies development.

    1. Cell Biology
    2. Physics of Living Systems
    Sohyeon Park et al.
    Research Article Updated

    In addition to diffusive signals, cells in tissue also communicate via long, thin cellular protrusions, such as airinemes in zebrafish. Before establishing communication, cellular protrusions must find their target cell. Here, we demonstrate that the shapes of airinemes in zebrafish are consistent with a finite persistent random walk model. The probability of contacting the target cell is maximized for a balance between ballistic search (straight) and diffusive search (highly curved, random). We find that the curvature of airinemes in zebrafish, extracted from live-cell microscopy, is approximately the same value as the optimum in the simple persistent random walk model. We also explore the ability of the target cell to infer direction of the airineme’s source, finding that there is a theoretical trade-off between search optimality and directional information. This provides a framework to characterize the shape, and performance objectives, of non-canonical cellular protrusions in general.