Unified quantitative characterization of epithelial tissue development

  1. Boris Guirao
  2. Stéphane U Rigaud
  3. Floris Bosveld
  4. Anaïs Bailles
  5. Jesus Lopez-Gay
  6. Shuji Ishihara
  7. Kaoru Sugimura
  8. François Graner
  9. Yohanns Bellaïche  Is a corresponding author
  1. Institut Curie, France
  2. Aix Marseille Université, France
  3. Meiji University, Japan
  4. Kyoto University, Japan
  5. Univsersité Paris-Diderot, France

Abstract

Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantifed separately all morphogenetic events in the Drosophila wing and dorsal thorax pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all signifcantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development.

Article and author information

Author details

  1. Boris Guirao

    Polarity, Division and Morphogenesis Team, Génétique et biologie du développement, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Stéphane U Rigaud

    Polarity, Division and Morphogenesis Team, Génétique et biologie du développement, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Floris Bosveld

    Polarity, Division and Morphogenesis Team, Génétique et biologie du développement, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Anaïs Bailles

    Institut de Biologie du Développement de Marseille, Aix Marseille Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Jesus Lopez-Gay

    Polarity, Division and Morphogenesis Team, Génétique et biologie du développement, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Shuji Ishihara

    Department of Physics, School of Science and Technology, Meiji University, Kanagawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Kaoru Sugimura

    Institute for Integrated Cell-Material Sceinces, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. François Graner

    Laboratoire Matière et Systèmes Complexes, Univsersité Paris-Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Yohanns Bellaïche

    Polarity, Division and Morphogenesis Team, Génétique et biologie du développement, Institut Curie, Paris, France
    For correspondence
    yohanns.bellaiche@curie.fr
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Guirao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,039
    views
  • 1,831
    downloads
  • 189
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Boris Guirao
  2. Stéphane U Rigaud
  3. Floris Bosveld
  4. Anaïs Bailles
  5. Jesus Lopez-Gay
  6. Shuji Ishihara
  7. Kaoru Sugimura
  8. François Graner
  9. Yohanns Bellaïche
(2015)
Unified quantitative characterization of epithelial tissue development
eLife 4:e08519.
https://doi.org/10.7554/eLife.08519

Share this article

https://doi.org/10.7554/eLife.08519

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Deb Sankar Banerjee, Shiladitya Banerjee
    Research Article

    Accurate regulation of centrosome size is essential for ensuring error-free cell division, and dysregulation of centrosome size has been linked to various pathologies, including developmental defects and cancer. While a universally accepted model for centrosome size regulation is lacking, prior theoretical and experimental works suggest a centrosome growth model involving autocatalytic assembly of the pericentriolar material. Here, we show that the autocatalytic assembly model fails to explain the attainment of equal centrosome sizes, which is crucial for error-free cell division. Incorporating latest experimental findings into the molecular mechanisms governing centrosome assembly, we introduce a new quantitative theory for centrosome growth involving catalytic assembly within a shared pool of enzymes. Our model successfully achieves robust size equality between maturing centrosome pairs, mirroring cooperative growth dynamics observed in experiments. To validate our theoretical predictions, we compare them with available experimental data and demonstrate the broad applicability of the catalytic growth model across different organisms, which exhibit distinct growth dynamics and size scaling characteristics.

    1. Cell Biology
    2. Physics of Living Systems
    Marta Urbanska, Yan Ge ... Jochen Guck
    Research Article

    Cell mechanical properties determine many physiological functions, such as cell fate specification, migration, or circulation through vasculature. Identifying factors that govern the mechanical properties is therefore a subject of great interest. Here, we present a mechanomics approach for establishing links between single-cell mechanical phenotype changes and the genes involved in driving them. We combine mechanical characterization of cells across a variety of mouse and human systems with machine learning-based discriminative network analysis of associated transcriptomic profiles to infer a conserved network module of five genes with putative roles in cell mechanics regulation. We validate in silico that the identified gene markers are universal, trustworthy, and specific to the mechanical phenotype across the studied mouse and human systems, and demonstrate experimentally that a selected target, CAV1, changes the mechanical phenotype of cells accordingly when silenced or overexpressed. Our data-driven approach paves the way toward engineering cell mechanical properties on demand to explore their impact on physiological and pathological cell functions.