The 133-kDa N-terminal domain enables myosin 15 to maintain mechanotransducing stereocilia and is essential for hearing

  1. Qing Fang
  2. Artur A Indzhykulian
  3. Mirna Mustapha
  4. Gavin P Riordan
  5. David F Dolan
  6. Thomas B Friedman
  7. Inna A Belyantseva
  8. Gregory I Frolenkov
  9. Sally A Camper
  10. Jonathan E Bird  Is a corresponding author
  1. University of Michigan, United States
  2. Harvard Medical School, United States
  3. Stanford University, United States
  4. National Institute on Deafness and Other Communication Disorders, United States
  5. University of Michigan Medical School, United States
  6. University of Kentucky, United States

Abstract

The precise assembly of inner ear hair cell stereocilia into rows of increasing height is critical for mechanotransduction and the sense of hearing. Yet, how the lengths of actin-based stereocilia are regulated remains poorly understood. Mutations of the molecular motor myosin-15 stunt stereocilia growth and cause deafness. We found that hair cells express two isoforms of myosin-15 through alternative splicing of an N-terminal domain, and that these isoforms selectively traffic to different stereocilia rows. Using an isoform-specific knockout mouse, hair cells expressing only the small isoform remarkably develop normal stereocilia bundles. However, a critical subset of stereocilia with active mechanotransducer channels subsequently retracts. The larger isoform with the N-terminal domain traffics to these specialized stereocilia and prevents disassembly of their actin core. Our results show that myosin-15 isoforms can navigate between functionally distinct classes of stereocilia, and are independently required to assemble and then maintain the intricate hair bundle architecture.

Article and author information

Author details

  1. Qing Fang

    Department of Human Genetics, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Artur A Indzhykulian

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mirna Mustapha

    Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gavin P Riordan

    Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David F Dolan

    Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Thomas B Friedman

    Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Inna A Belyantseva

    Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Gregory I Frolenkov

    Department of Physiology, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sally A Camper

    Department of Human Genetics, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jonathan E Bird

    Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
    For correspondence
    jonathan.bird@nih.gov
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal procedures were approved by the institutional animal care and use committees (IACUC) at the University of Michigan (#PRO00004639, #PRO00005913, #PRO00005128), the University of Kentucky (#903M2005) and at the NIDCD (#1263-12).

Reviewing Editor

  1. Jeremy Nathans, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, United States

Publication history

  1. Received: May 9, 2015
  2. Accepted: August 22, 2015
  3. Accepted Manuscript published: August 24, 2015 (version 1)
  4. Version of Record published: October 6, 2015 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,373
    Page views
  • 630
    Downloads
  • 45
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qing Fang
  2. Artur A Indzhykulian
  3. Mirna Mustapha
  4. Gavin P Riordan
  5. David F Dolan
  6. Thomas B Friedman
  7. Inna A Belyantseva
  8. Gregory I Frolenkov
  9. Sally A Camper
  10. Jonathan E Bird
(2015)
The 133-kDa N-terminal domain enables myosin 15 to maintain mechanotransducing stereocilia and is essential for hearing
eLife 4:e08627.
https://doi.org/10.7554/eLife.08627
  1. Further reading

Further reading

    1. Cell Biology
    Gina M LoMastro, Chelsea G Drown ... Andrew Jon Holland
    Research Article Updated

    Multiciliated cells (MCCs) are terminally differentiated epithelia that assemble multiple motile cilia used to promote fluid flow. To template these cilia, MCCs dramatically expand their centriole content during a process known as centriole amplification. In cycling cells, the master regulator of centriole assembly Polo-like kinase 4 (PLK4) is essential for centriole duplication; however recent work has questioned the role of PLK4 in centriole assembly in MCCs. To address this discrepancy, we created genetically engineered mouse models and demonstrated that both PLK4 protein and kinase activity are critical for centriole amplification in MCCs. Tracheal epithelial cells that fail centriole amplification accumulate large assemblies of centriole proteins and do not undergo apical surface area expansion. These results show that the initial stages of centriole assembly are conserved between cycling cells and MCCs and suggest that centriole amplification and surface area expansion are coordinated events.

    1. Cell Biology
    2. Genetics and Genomics
    Shawn P Shortill, Mia S Frier ... Elizabeth Conibear
    Research Article Updated

    Membrane trafficking pathways perform important roles in establishing and maintaining the endosomal network. Retrograde protein sorting from the endosome is promoted by conserved SNX-BAR-containing coat complexes including retromer which enrich cargo at tubular microdomains and generate transport carriers. In metazoans, retromer cooperates with VARP, a conserved VPS9-domain GEF, to direct an endosomal recycling pathway. The function of the yeast VARP homolog Vrl1 has been overlooked due to an inactivating mutation found in commonly studied strains. Here, we demonstrate that Vrl1 has features of a SNX-BAR coat protein and forms an obligate complex with Vin1, the paralog of the retromer SNX-BAR protein Vps5. Unique features in the Vin1 N-terminus allow Vrl1 to distinguish it from Vps5, thereby forming a complex that we have named VINE. The VINE complex occupies endosomal tubules and redistributes a conserved mannose 6-phosphate receptor-like protein from endosomes. We also find that membrane recruitment by Vin1 is essential for Vrl1 GEF activity, suggesting that VINE is a multifunctional coat complex that regulates trafficking and signaling events at the endosome.