Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions

  1. Chun-Chieh Lin
  2. Katharine A Prokop-Prigge
  3. George Preti
  4. Christopher J Potter  Is a corresponding author
  1. Johns Hopkins School of Medicine, United States
  2. Monell Chemical Senses Center, United States

Abstract

Animals use olfactory cues for navigating complex environments. Food odors in particular provide crucial information regarding potential foraging sites. Many behaviors occur at food sites, yet how food odors regulate such behaviors at these sites is unclear. Using Drosophila melanogaster as an animal model, we found that males deposit the pheromone 9-tricosene upon stimulation with the food-odor apple cider vinegar. This pheromone acts as a potent aggregation pheromone and as an oviposition guidance cue for females. We use genetic, molecular, electrophysiological, and behavioral approaches to show that 9-tricosene activates antennal basiconic Or7a receptors, a receptor activated by many alcohols and aldehydes such as the green leaf volatile E2-hexenal. We demonstrate that loss of Or7a+ neurons or the Or7a receptor abolishes aggregation behavior and oviposition site-selection towards 9-tricosene and E2-hexenal. 9-Tricosene thus functions via Or7a to link food-odor perception with aggregation and egg-laying decisions.

Article and author information

Author details

  1. Chun-Chieh Lin

    The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Katharine A Prokop-Prigge

    Monell Chemical Senses Center, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. George Preti

    Monell Chemical Senses Center, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher J Potter

    The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins School of Medicine, Baltimore, United States
    For correspondence
    cpotter@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Publication history

  1. Received: May 22, 2015
  2. Accepted: September 28, 2015
  3. Accepted Manuscript published: September 30, 2015 (version 1)
  4. Version of Record published: October 27, 2015 (version 2)

Copyright

© 2015, Lin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,988
    Page views
  • 1,157
    Downloads
  • 58
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chun-Chieh Lin
  2. Katharine A Prokop-Prigge
  3. George Preti
  4. Christopher J Potter
(2015)
Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions
eLife 4:e08688.
https://doi.org/10.7554/eLife.08688

Further reading

    1. Neuroscience
    Liqiang Chen et al.
    Short Report

    The presynaptic protein α-synuclein (αSyn) has been suggested to be involved in the pathogenesis of Parkinson’s disease (PD). In PD, the amygdala is prone to develop insoluble αSyn aggregates, and it has been suggested that circuit dysfunction involving the amygdala contributes to the psychiatric symptoms. Yet, how αSyn aggregates affect amygdala function is unknown. In this study, we examined αSyn in glutamatergic axon terminals and the impact of its aggregation on glutamatergic transmission in the basolateral amygdala (BLA). We found that αSyn is primarily present in the vesicular glutamate transporter 1-expressing (vGluT1+) terminals in mouse BLA, which is consistent with higher levels of αSyn expression in vGluT1+ glutamatergic neurons in the cerebral cortex relative to the vGluT2+ glutamatergic neurons in the thalamus. We found that αSyn aggregation selectively decreased the cortico-BLA, but not the thalamo-BLA, transmission; and that cortico-BLA synapses displayed enhanced short-term depression upon repetitive stimulation. In addition, using confocal microscopy, we found that vGluT1+ axon terminals exhibited decreased levels of soluble αSyn, which suggests that lower levels of soluble αSyn might underlie the enhanced short-term depression of cortico-BLA synapses. In agreement with this idea, we found that cortico-BLA synaptic depression was also enhanced in αSyn knockout mice. In conclusion, both basal and dynamic cortico-BLA transmission were disrupted by abnormal aggregation of αSyn and these changes might be relevant to the perturbed cortical control of the amygdala that has been suggested to play a role in psychiatric symptoms in PD.

    1. Evolutionary Biology
    2. Neuroscience
    Elias T Lunsford et al.
    Research Article Updated

    Animals can evolve dramatic sensory functions in response to environmental constraints, but little is known about the neural mechanisms underlying these changes. The Mexican tetra, Astyanax mexicanus, is a leading model to study genetic, behavioral, and physiological evolution by comparing eyed surface populations and blind cave populations. We compared neurophysiological responses of posterior lateral line afferent neurons and motor neurons across A. mexicanus populations to reveal how shifts in sensory function may shape behavioral diversity. These studies indicate differences in intrinsic afferent signaling and gain control across populations. Elevated endogenous afferent activity identified a lower response threshold in the lateral line of blind cavefish relative to surface fish leading to increased evoked potentials during hair cell deflection in cavefish. We next measured the effect of inhibitory corollary discharges from hindbrain efferent neurons onto afferents during locomotion. We discovered that three independently derived cavefish populations have evolved persistent afferent activity during locomotion, suggesting for the first time that partial loss of function in the efferent system can be an evolutionary mechanism for neural adaptation of a vertebrate sensory system.