Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions

  1. Chun-Chieh Lin
  2. Katharine A Prokop-Prigge
  3. George Preti
  4. Christopher J Potter  Is a corresponding author
  1. Johns Hopkins School of Medicine, United States
  2. Monell Chemical Senses Center, United States

Abstract

Animals use olfactory cues for navigating complex environments. Food odors in particular provide crucial information regarding potential foraging sites. Many behaviors occur at food sites, yet how food odors regulate such behaviors at these sites is unclear. Using Drosophila melanogaster as an animal model, we found that males deposit the pheromone 9-tricosene upon stimulation with the food-odor apple cider vinegar. This pheromone acts as a potent aggregation pheromone and as an oviposition guidance cue for females. We use genetic, molecular, electrophysiological, and behavioral approaches to show that 9-tricosene activates antennal basiconic Or7a receptors, a receptor activated by many alcohols and aldehydes such as the green leaf volatile E2-hexenal. We demonstrate that loss of Or7a+ neurons or the Or7a receptor abolishes aggregation behavior and oviposition site-selection towards 9-tricosene and E2-hexenal. 9-Tricosene thus functions via Or7a to link food-odor perception with aggregation and egg-laying decisions.

Article and author information

Author details

  1. Chun-Chieh Lin

    The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Katharine A Prokop-Prigge

    Monell Chemical Senses Center, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. George Preti

    Monell Chemical Senses Center, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher J Potter

    The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins School of Medicine, Baltimore, United States
    For correspondence
    cpotter@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Version history

  1. Received: May 22, 2015
  2. Accepted: September 28, 2015
  3. Accepted Manuscript published: September 30, 2015 (version 1)
  4. Version of Record published: October 27, 2015 (version 2)

Copyright

© 2015, Lin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,117
    Page views
  • 1,248
    Downloads
  • 82
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chun-Chieh Lin
  2. Katharine A Prokop-Prigge
  3. George Preti
  4. Christopher J Potter
(2015)
Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions
eLife 4:e08688.
https://doi.org/10.7554/eLife.08688

Share this article

https://doi.org/10.7554/eLife.08688

Further reading

    1. Neuroscience
    Daniel R Schonhaut, Aditya M Rao ... Michael J Kahana
    Research Article Updated

    Memory formation depends on neural activity across a network of regions, including the hippocampus and broader medial temporal lobe (MTL). Interactions between these regions have been studied indirectly using functional MRI, but the bases for interregional communication at a cellular level remain poorly understood. Here, we evaluate the hypothesis that oscillatory currents in the hippocampus synchronize the firing of neurons both within and outside the hippocampus. We recorded extracellular spikes from 1854 single- and multi-units simultaneously with hippocampal local field potentials (LFPs) in 28 neurosurgical patients who completed virtual navigation experiments. A majority of hippocampal neurons phase-locked to oscillations in the slow (2–4 Hz) or fast (6–10 Hz) theta bands, with a significant subset exhibiting nested slow theta × beta frequency (13–20 Hz) phase-locking. Outside of the hippocampus, phase-locking to hippocampal oscillations occurred only at theta frequencies and primarily among neurons in the entorhinal cortex and amygdala. Moreover, extrahippocampal neurons phase-locked to hippocampal theta even when theta did not appear locally. These results indicate that spike-time synchronization with hippocampal theta is a defining feature of neuronal activity in the hippocampus and structurally connected MTL regions. Theta phase-locking could mediate flexible communication with the hippocampus to influence the content and quality of memories.

    1. Developmental Biology
    2. Neuroscience
    Sergi Llambrich, Birger Tielemans ... Greetje Vande Velde
    Research Article

    Down syndrome (DS) is characterized by skeletal and brain structural malformations, cognitive impairment, altered hippocampal metabolite concentration and gene expression imbalance. These alterations were usually investigated separately, and the potential rescuing effects of green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG) provided disparate results due to different experimental conditions. We overcame these limitations by conducting the first longitudinal controlled experiment evaluating genotype and GTE-EGCG prenatal chronic treatment effects before and after treatment discontinuation. Our findings revealed that the Ts65Dn mouse model reflected the pleiotropic nature of DS, exhibiting brachycephalic skull, ventriculomegaly, neurodevelopmental delay, hyperactivity, and impaired memory robustness with altered hippocampal metabolite concentration and gene expression. GTE-EGCG treatment modulated most systems simultaneously but did not rescue DS phenotypes. On the contrary, the treatment exacerbated trisomic phenotypes including body weight, tibia microarchitecture, neurodevelopment, adult cognition, and metabolite concentration, not supporting the therapeutic use of GTE-EGCG as a prenatal chronic treatment. Our results highlight the importance of longitudinal experiments assessing the co-modulation of multiple systems throughout development when characterizing preclinical models in complex disorders and evaluating the pleiotropic effects and general safety of pharmacological treatments.