Axon injury triggers EFA-6 mediated destabilization of axonal microtubules via TACC and doublecortin like kinase

  1. Lizhen Chen
  2. Marian Chuang
  3. Thijs Koorman
  4. Mike Boxem
  5. Yishi Jin
  6. Andrew D Chisholm  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California, San Diego, United States
  2. University of California, San Diego, United States
  3. Utrecht University, Netherlands

Abstract

Axon injury triggers a series of changes in the axonal cytoskeleton that are prerequisites for effective axon regeneration. In C. elegans the signaling protein EFA-6 is a potent intrinsic inhibitor of axon regrowth. Here we show that axon injury triggers rapid EFA-6-dependent inhibition of axonal microtubule (MT) dynamics, concomitant with relocalization of EFA-6. EFA-6 relocalization and axon regrowth inhibition require a conserved 18-aa motif in its otherwise intrinsically disordered N-terminal domain. The EFA-6 N-terminus binds the MT-associated proteins TAC-1/Transforming-Acidic-Coiled-Coil, and ZYG-8/Doublecortin-Like-Kinase, both of which are required for regenerative growth cone formation, and which act downstream of EFA-6. After injury TAC-1 and EFA-6 transiently relocalize to sites marked by the MT minus end binding protein PTRN-1/Patronin. We propose that EFA-6 acts as a bifunctional injury-responsive regulator of axonal MT dynamics, acting at the cell cortex in the steady state and at MT minus ends after injury.

Article and author information

Author details

  1. Lizhen Chen

    Division of Biological Sciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marian Chuang

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Thijs Koorman

    Department of Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Mike Boxem

    Department of Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Yishi Jin

    Division of Biological Sciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrew D Chisholm

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    For correspondence
    chisholm@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute for Fundamental Research, India

Version history

  1. Received: May 14, 2015
  2. Accepted: September 3, 2015
  3. Accepted Manuscript published: September 4, 2015 (version 1)
  4. Version of Record published: October 8, 2015 (version 2)

Copyright

© 2015, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,349
    views
  • 554
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lizhen Chen
  2. Marian Chuang
  3. Thijs Koorman
  4. Mike Boxem
  5. Yishi Jin
  6. Andrew D Chisholm
(2015)
Axon injury triggers EFA-6 mediated destabilization of axonal microtubules via TACC and doublecortin like kinase
eLife 4:e08695.
https://doi.org/10.7554/eLife.08695

Share this article

https://doi.org/10.7554/eLife.08695

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Developmental Biology
    2. Evolutionary Biology
    Zhuqing Wang, Yue Wang ... Wei Yan
    Research Article

    Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.