1. Computational and Systems Biology
  2. Neuroscience
Download icon

Competing basal-ganglia pathways determine the difference between stopping and deciding not to go

  1. Kyle Dunovan  Is a corresponding author
  2. Brighid Lynch
  3. Tara Molesworth
  4. Timothy Verstynen
  1. University of Pittsburgh, United States
  2. University of Pittsburgh, Carnegie Mellon University, United States
Research Article
  • Cited 35
  • Views 2,876
  • Annotations
Cite this article as: eLife 2015;4:e08723 doi: 10.7554/eLife.08723

Abstract

The architecture of cortico-basal ganglia pathways allows for many routes to inhibit a planned action: the hyper-direct pathway performs fast action cancellation and the indirect pathway competitively constrains execution signals from the direct pathway. We present a novel model, principled off of basal ganglia circuitry, that differentiates control dynamics of reactive stopping from intrinsic no-go decisions. Using a nested diffusion model, we show how reactive braking depends on the state of an execution process. In contrast, no-go decisions are best captured by a failure of the execution process to reach the decision threshold due to increasing constraints on the drift rate. This model accounts for both behavioral and fMRI responses during inhibitory control tasks better than alternative models. The advantage of this framework is that it allows for incorporating the effects of context in reactive and proactive control into a single unifying parameter, while distinguishing action cancellation from no-go decisions.

Article and author information

Author details

  1. Kyle Dunovan

    Department of Psychology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    dunovank@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Brighid Lynch

    Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tara Molesworth

    Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Timothy Verstynen

    Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: Neurologically healthy adults were recruited from the local university population. All procedures were approved by the local institutional review board at Carnegie Mellon University. All research participants provided informed consent to participate in the study and consent to publish any research findings based on their provided data.

Reviewing Editor

  1. Michael J Frank, Brown University, United States

Publication history

  1. Received: May 14, 2015
  2. Accepted: September 23, 2015
  3. Accepted Manuscript published: September 24, 2015 (version 1)
  4. Version of Record published: December 4, 2015 (version 2)

Copyright

© 2015, Dunovan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,876
    Page views
  • 631
    Downloads
  • 35
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    Lucile Megret et al.
    Research Article

    Loss of cellular homeostasis has been implicated in the etiology of several neurodegenerative diseases (NDs). However, the molecular mechanisms that underlie this loss remain poorly understood on a systems level in each case. Here, using a novel computational approach to integrate dimensional RNA-seq and in vivo neuron survival data, we map the temporal dynamics of homeostatic and pathogenic responses in four striatal cell types of Huntington’s disease (HD) model mice. This map shows that most pathogenic responses are mitigated and most homeostatic responses are decreased over time, suggesting that neuronal death in HD is primarily driven by the loss of homeostatic responses. Moreover, different cell types may lose similar homeostatic processes, for example, endosome biogenesis and mitochondrial quality control in Drd1-expressing neurons and astrocytes. HD relevance is validated by human stem cell, genome-wide association study, and post-mortem brain data. These findings provide a new paradigm and framework for therapeutic discovery in HD and other NDs.

    1. Cell Biology
    2. Computational and Systems Biology
    Taraneh Zarin et al.
    Research Advance

    In previous work, we showed that intrinsically disordered regions (IDRs) of proteins contain sequence-distributed molecular features that are conserved over evolution, despite little sequence similarity that can be detected in alignments (Zarin et al. 2019). Here, we aim to use these molecular features to predict specific biological functions for individual IDRs and identify the molecular features within them that are associated with these functions. We find that the predictable functions are diverse. Examining the associated molecular features, we note some that are consistent with previous reports, and identify others that were previously unknown. We experimentally confirm that elevated isoelectric point and hydrophobicity, features that are positively associated with mitochondrial localization, are necessary for mitochondrial targeting function. Remarkably, increasing isoelectric point in a synthetic IDR restores weak mitochondrial targeting. We believe feature analysis represents a new systematic approach to understand how biological functions of IDRs are specified by their protein sequences.