Tubulin cofactors and Arl2 are cage-like chaperones that regulate the soluble αβ-tubulin pool for microtubule dynamics

  1. Stanley Nithiananatham
  2. Sinh Le
  3. Elbert Seto
  4. Weitao Jia
  5. Julie Leary
  6. Kevin D Corbett
  7. Jeffrey K Moore
  8. Jawdat Al-Bassam  Is a corresponding author
  1. University of California, Davis, United States
  2. University of California, San Diego, United States
  3. University of Colorado School of Medicine, United States

Abstract

Microtubule dynamics and polarity stem from the polymerization of αß-tubulin heterodimers. Five conserved tubulin cofactors/chaperones and the Arl2 GTPase regulate α- and β-tubulin assembly into heterodimers and maintain the soluble tubulin pool in the cytoplasm, but their physical mechanisms are unknown. Here, we reconstitute a core tubulin chaperone consisting of tubulin cofactors TBCD, TBCE and Arl2, and reveal a cage-like structure for regulating αβ-tubulin. Biochemical assays and electron microscopy structures of multiple intermediates show the sequential binding of αβ-tubulin dimer followed by tubulin cofactor TBCC onto this chaperone, forming a ternary complex in which Arl2 GTP hydrolysis is activated to alter αβ-tubulin conformation. A GTP-state locked Arl2 mutant inhibits ternary complex dissociation in vitro and causes severe defects in microtubule dynamics in vivo. Our studies suggest a revised paradigm for tubulin cofactors and Arl2 functions as a catalytic chaperone that regulates soluble αβ-tubulin assembly and maintenance to support microtubule dynamics.

Article and author information

Author details

  1. Stanley Nithiananatham

    Department of Molecular Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sinh Le

    Department of Molecular Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elbert Seto

    Department of Molecular Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Weitao Jia

    Department of Molecular Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Julie Leary

    Department of Molecular Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kevin D Corbett

    Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jeffrey K Moore

    Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jawdat Al-Bassam

    Department of Molecular Cellular Biology, University of California, Davis, Davis, United States
    For correspondence
    jawdat@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Nithiananatham et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,607
    views
  • 716
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stanley Nithiananatham
  2. Sinh Le
  3. Elbert Seto
  4. Weitao Jia
  5. Julie Leary
  6. Kevin D Corbett
  7. Jeffrey K Moore
  8. Jawdat Al-Bassam
(2015)
Tubulin cofactors and Arl2 are cage-like chaperones that regulate the soluble αβ-tubulin pool for microtubule dynamics
eLife 4:e08811.
https://doi.org/10.7554/eLife.08811

Share this article

https://doi.org/10.7554/eLife.08811

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Eyal Paz, Sahil Jain ... Abdussalam Azem
    Research Article

    TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ~60% of the mitochondrial proteome. In this study, we characterized a TIMM50 disease-causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady-state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome. As TIMM50 mutations have been linked to severe neurological phenotypes, we aimed to characterize TIMM50 defects in manipulated mammalian neurons. TIMM50 knockdown in mouse neurons had a minor effect on the steady state level of most of the mitochondrial proteome, supporting the results observed in patient fibroblasts. Amongst the few affected TIM23 substrates, a decrease in the steady state level of components of the intricate oxidative phosphorylation and mitochondrial ribosome complexes was evident. This led to declined respiration rates in fibroblasts and neurons, reduced cellular ATP levels, and defective mitochondrial trafficking in neuronal processes, possibly contributing to the developmental defects observed in patients with TIMM50 disease. Finally, increased electrical activity was observed in TIMM50 deficient mice neuronal cells, which correlated with reduced levels of KCNJ10 and KCNA2 plasma membrane potassium channels, likely underlying the patients’ epileptic phenotype.