Normative evidence accumulation in unpredictable environments

  1. Christopher M Glaze  Is a corresponding author
  2. Joseph W Kable
  3. Joshua I Gold
  1. University of Pennsylvania, United States
  2. University of Pennsylvania, United Kingdom

Abstract

In our dynamic world, decisions about noisy stimuli can require temporal accumulation of evidence to identify steady signals; differentiation to detect unpredictable changes in those signals; or both. Normative models can account for learning in these environments but have not yet been applied to faster decision processes. We present a novel, normative formulation of adaptive learning models that forms decisions by acting as a leaky accumulator with non-absorbing bounds. These dynamics, derived for both discrete and continuous cases, depend on the expected rate of change of the statistics of the evidence and balance signal identification and change detection. We found that, for two different tasks, human subjects learned these expectations, albeit imperfectly, then used them to make decisions in accordance with the normative model. The results represent a unified, empirically supported account of decision-making in unpredictable environments that provides new insights into the expectation-driven dynamics of the underlying neural signals.

Article and author information

Author details

  1. Christopher M Glaze

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    For correspondence
    cglaze@sas.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Joseph W Kable

    Department of Psychology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joshua I Gold

    Department of Neuroscience, University of Pennsylvania, University of Pennsylvania, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: Informed consent, and consent to publish, was obtained from each subject prior to each experiment. Human subject protocols were approved by the University of Pennsylvania Internal Review Board.

Copyright

© 2015, Glaze et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,202
    views
  • 884
    downloads
  • 145
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher M Glaze
  2. Joseph W Kable
  3. Joshua I Gold
(2015)
Normative evidence accumulation in unpredictable environments
eLife 4:e08825.
https://doi.org/10.7554/eLife.08825

Share this article

https://doi.org/10.7554/eLife.08825

Further reading

    1. Neuroscience
    Su Young Han, Shel-Hwa Yeo ... Allan E Herbison
    Research Article

    The gonadotropin-releasing hormone (GnRH) neurons represent the key output cells of the neural network controlling mammalian fertility. We used GCaMP fiber photometry to record the population activity of the GnRH neuron distal projections in the ventral arcuate nucleus where they merge before entering the median eminence to release GnRH into the portal vasculature. Recordings in freely behaving intact male and female mice revealed abrupt ~8 min duration increases in activity that correlated perfectly with the appearance of a subsequent pulse of luteinizing hormone (LH). The GnRH neuron dendrons also exhibited a low level of unchanging clustered, rapidly fluctuating baseline activity in males and throughout the estrous cycle in females. In female mice, a gradual increase in basal activity that exhibited ~80 min oscillations began in the afternoon of proestrus and lasted for 12 hr. This was associated with the onset of the LH surge that ended several hours before the fall in the GCaMP signal. Abrupt 8 min duration episodes of GCaMP activity continued to occur on top of the rising surge baseline before ceasing in estrus. These observations provide the first description of GnRH neuron activity in freely behaving animals. They demonstrate that three distinct patterns of oscillatory activity occur in GnRH neurons. These are comprised of low-level rapid baseline activity, abrupt 8 min duration oscillations that drive pulsatile gonadotropin secretion, and, in females, a gradual and very prolonged oscillating increase in activity responsible for the preovulatory LH surge.

    1. Neuroscience
    2. Physics of Living Systems
    Iksoo Chang, Taegon Chung, Sangyeol Kim
    Research Article

    Recent experimental studies showed that electrically coupled neural networks like in mammalian inferior olive nucleus generate synchronized rhythmic activity by the subthreshold sinusoidal-like oscillations of the membrane voltage. Understanding the basic mechanism and its implication of such phenomena in the nervous system bears fundamental importance and requires preemptively the connectome information of a given nervous system. Inspired by these necessities of developing a theoretical and computational model to this end and, however, in the absence of connectome information for the inferior olive nucleus, here we investigated interference phenomena of the subthreshold oscillations in the reference system Caenorhabditis elegans for which the structural anatomical connectome was completely known recently. We evaluated how strongly the sinusoidal wave was transmitted between arbitrary two cells in the model network. The region of cell-pairs that are good at transmitting waves changed according to the wavenumber of the wave, for which we named a wavenumber-dependent transmission map. Also, we unraveled that (1) the transmission of all cell-pairs disappeared beyond a threshold wavenumber, (2) long distance and regular patterned transmission existed in the body-wall muscles part of the model network, and (3) major hub cell-pairs of the transmission were identified for many wavenumber conditions. A theoretical and computational model presented in this study provided fundamental insight for understanding how the multi-path constructive/destructive interference of the subthreshold oscillations propagating on electrically coupled neural networks could generate wavenumber-dependent synchronized rhythmic activity.