Normative evidence accumulation in unpredictable environments

  1. Christopher M Glaze  Is a corresponding author
  2. Joseph W Kable
  3. Joshua I Gold
  1. University of Pennsylvania, United States
  2. University of Pennsylvania, United Kingdom

Abstract

In our dynamic world, decisions about noisy stimuli can require temporal accumulation of evidence to identify steady signals; differentiation to detect unpredictable changes in those signals; or both. Normative models can account for learning in these environments but have not yet been applied to faster decision processes. We present a novel, normative formulation of adaptive learning models that forms decisions by acting as a leaky accumulator with non-absorbing bounds. These dynamics, derived for both discrete and continuous cases, depend on the expected rate of change of the statistics of the evidence and balance signal identification and change detection. We found that, for two different tasks, human subjects learned these expectations, albeit imperfectly, then used them to make decisions in accordance with the normative model. The results represent a unified, empirically supported account of decision-making in unpredictable environments that provides new insights into the expectation-driven dynamics of the underlying neural signals.

Article and author information

Author details

  1. Christopher M Glaze

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    For correspondence
    cglaze@sas.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Joseph W Kable

    Department of Psychology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joshua I Gold

    Department of Neuroscience, University of Pennsylvania, University of Pennsylvania, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Timothy Behrens, Oxford University, United Kingdom

Ethics

Human subjects: Informed consent, and consent to publish, was obtained from each subject prior to each experiment. Human subject protocols were approved by the University of Pennsylvania Internal Review Board.

Version history

  1. Received: May 19, 2015
  2. Accepted: August 30, 2015
  3. Accepted Manuscript published: August 31, 2015 (version 1)
  4. Version of Record published: September 28, 2015 (version 2)

Copyright

© 2015, Glaze et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,081
    views
  • 841
    downloads
  • 137
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher M Glaze
  2. Joseph W Kable
  3. Joshua I Gold
(2015)
Normative evidence accumulation in unpredictable environments
eLife 4:e08825.
https://doi.org/10.7554/eLife.08825

Share this article

https://doi.org/10.7554/eLife.08825

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.