Normative evidence accumulation in unpredictable environments
Abstract
In our dynamic world, decisions about noisy stimuli can require temporal accumulation of evidence to identify steady signals; differentiation to detect unpredictable changes in those signals; or both. Normative models can account for learning in these environments but have not yet been applied to faster decision processes. We present a novel, normative formulation of adaptive learning models that forms decisions by acting as a leaky accumulator with non-absorbing bounds. These dynamics, derived for both discrete and continuous cases, depend on the expected rate of change of the statistics of the evidence and balance signal identification and change detection. We found that, for two different tasks, human subjects learned these expectations, albeit imperfectly, then used them to make decisions in accordance with the normative model. The results represent a unified, empirically supported account of decision-making in unpredictable environments that provides new insights into the expectation-driven dynamics of the underlying neural signals.
Article and author information
Author details
Ethics
Human subjects: Informed consent, and consent to publish, was obtained from each subject prior to each experiment. Human subject protocols were approved by the University of Pennsylvania Internal Review Board.
Copyright
© 2015, Glaze et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,195
- views
-
- 913
- downloads
-
- 164
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 164
- citations for umbrella DOI https://doi.org/10.7554/eLife.08825
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Neuroscience
Models based on normative principles have played a major role in our understanding of how the brain forms decisions. However, these models have typically been derived for simple, stable conditions, and their relevance to decisions formed under more naturalistic, dynamic conditions is unclear. We previously derived a normative decision model in which evidence accumulation is adapted to fluctuations in the evidence-generating process that occur during a single decision (Glaze et al., 2015), but the evolution of commitment rules (e.g. thresholds on the accumulated evidence) under dynamic conditions is not fully understood. Here, we derive a normative model for decisions based on changing contexts, which we define as changes in evidence quality or reward, over the course of a single decision. In these cases, performance (reward rate) is maximized using decision thresholds that respond to and even anticipate these changes, in contrast to the static thresholds used in many decision models. We show that these adaptive thresholds exhibit several distinct temporal motifs that depend on the specific predicted and experienced context changes and that adaptive models perform robustly even when implemented imperfectly (noisily). We further show that decision models with adaptive thresholds outperform those with constant or urgency-gated thresholds in accounting for human response times on a task with time-varying evidence quality and average reward. These results further link normative and neural decision-making while expanding our view of both as dynamic, adaptive processes that update and use expectations to govern both deliberation and commitment.