Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy

Abstract

Autophagy is a major pathway for the clearance of harmful material from the cytoplasm. During autophagy cytoplasmic material is delivered into the lysosomal system by organelles called autophagosomes. Autophagosomes form in a de novo manner and, in the course of their formation, isolate cargo material from the rest of the cytoplasm. Cargo specificity is conferred by autophagic cargo receptors that selectively link the cargo to the autophagosomal membrane decorated with ATG8 family proteins such as LC3B. Here we show that the human cargo receptor p62/SQSTM-1 employs oligomerization to stabilize its interaction with LC3B and linear ubiquitin when they are clustered on surfaces. Thus, oligomerization enables p62 to simultaneously select for the isolation membrane and the ubiquitinated cargo. We further show in a fully reconstituted system that the interaction of p62 with ubiquitin and LC3B is sufficient to bend the membrane around the cargo.

Article and author information

Author details

  1. Bettina Wurzer

    Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Gabriele Zaffagnini

    Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Dorotea Fracchiolla

    Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Eleonora Turco

    Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Christine Abert

    Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Julia Romanov

    Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Sascha Martens

    Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
    For correspondence
    sascha.martens@univie.ac.at
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Randy Schekman, Howard Hughes Medical Institute, University of California, Berkeley, United States

Version history

  1. Received: May 24, 2015
  2. Accepted: September 26, 2015
  3. Accepted Manuscript published: September 28, 2015 (version 1)
  4. Version of Record published: November 30, 2015 (version 2)

Copyright

© 2015, Wurzer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,252
    Page views
  • 1,772
    Downloads
  • 168
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bettina Wurzer
  2. Gabriele Zaffagnini
  3. Dorotea Fracchiolla
  4. Eleonora Turco
  5. Christine Abert
  6. Julia Romanov
  7. Sascha Martens
(2015)
Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy
eLife 4:e08941.
https://doi.org/10.7554/eLife.08941

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Rui-Qiu Yang, Yong-Hong Chen ... Cheng-Gang Zou
    Research Article Updated

    An imbalance of the gut microbiota, termed dysbiosis, has a substantial impact on host physiology. However, the mechanism by which host deals with gut dysbiosis to maintain fitness remains largely unknown. In Caenorhabditis elegans, Escherichia coli, which is its bacterial diet, proliferates in its intestinal lumen during aging. Here, we demonstrate that progressive intestinal proliferation of E. coli activates the transcription factor DAF-16, which is required for maintenance of longevity and organismal fitness in worms with age. DAF-16 up-regulates two lysozymes lys-7 and lys-8, thus limiting the bacterial accumulation in the gut of worms during aging. During dysbiosis, the levels of indole produced by E. coli are increased in worms. Indole is involved in the activation of DAF-16 by TRPA-1 in neurons of worms. Our finding demonstrates that indole functions as a microbial signal of gut dysbiosis to promote fitness of the host.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Daniel Muñoz-Reyes, Levi J McClelland ... Maria Jose Sanchez-Barrena
    Research Article

    The Neuronal Calcium Sensor 1, an EF-hand Ca2+ binding protein, and Ric-8A coregulate synapse number and probability of neurotransmitter release. Recently, the structures of Ric-8A bound to Ga have revealed how Ric-8A phosphorylation promotes Ga recognition and activity as a chaperone and guanine nucleotide exchange factor. However, the molecular mechanism by which NCS-1 regulates Ric-8A activity and its interaction with Ga subunits is not well understood. Given the interest in the NCS-1/Ric-8A complex as a therapeutic target in nervous system disorders, it is necessary to shed light on this molecular mechanism of action at atomic level. We have reconstituted NCS-1/Ric-8A complexes to conduct a multimodal approach and determine the sequence of Ca2+ signals and phosphorylation events that promote the interaction of Ric-8A with Ga. Our data show that the binding of NCS-1 and Ga to Ric-8A are mutually exclusive. Importantly, NCS-1 induces a structural rearrangement in Ric-8A that traps the protein in a conformational state that is inaccessible to Casein Kinase II-mediated phosphorylation, demonstrating one aspect of its negative regulation of Ric-8A-mediated G-protein signaling. Functional experiments indicate a loss of Ric-8A GEF activity towards Ga when complexed with NCS-1, and restoration of nucleotide exchange activity upon increasing Ca2+ concentration. Finally, the high-resolution crystallographic data reported here define the NCS-1/Ric-8A interface and will allow the development of therapeutic synapse function regulators with improved activity and selectivity.