1. Computational and Systems Biology
  2. Neuroscience
Download icon

Attention stabilizes the shared gain of V4 populations

  1. Neil C Rabinowitz
  2. Robbe L Goris
  3. Marlene Cohen
  4. Eero Simoncelli  Is a corresponding author
  1. Howard Hughes Medical Institute, New York University, United States
  2. University of Pittsburgh, United States
Research Article
  • Cited 76
  • Views 2,408
  • Annotations
Cite this article as: eLife 2015;4:e08998 doi: 10.7554/eLife.08998

Abstract

Responses of sensory neurons represent stimulus information, but are also influenced by internal state. For example, when monkeys direct their attention to a visual stimulus, the response gain of specific subsets of neurons in visual cortex changes. Here, we develop a functional model of population activity to investigate the structure of this effect. We fit the model to the spiking activity of bilateral neural populations in area V4, recorded while the animal performed a stimulus discrimination task under spatial attention. The model reveals four separate time-varying shared modulatory signals, the dominant two of which each target task-relevant neurons in one hemisphere. In attention-directed conditions, the associated shared modulatory signal decreases in variance. This finding provides an interpretable and parsimonious explanation for previous observations that attention reduces variability and noise correlations of sensory neurons. Finally, the recovered modulatory signals reflect previous reward, and are predictive of choice behavior.

Article and author information

Author details

  1. Neil C Rabinowitz

    Center for Neural Science, Howard Hughes Medical Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Robbe L Goris

    Center for Neural Science, Howard Hughes Medical Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marlene Cohen

    Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Eero Simoncelli

    Center for Neural Science, Howard Hughes Medical Institute, New York University, New York, United States
    For correspondence
    eero.simoncelli@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Matteo Carandini, University College London, United Kingdom

Publication history

  1. Received: May 26, 2015
  2. Accepted: November 1, 2015
  3. Accepted Manuscript published: November 2, 2015 (version 1)
  4. Accepted Manuscript updated: December 24, 2015 (version 2)
  5. Version of Record published: February 5, 2016 (version 3)

Copyright

© 2015, Rabinowitz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,408
    Page views
  • 726
    Downloads
  • 76
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Ecology
    Tristan Walter, Iain D Couzin
    Tools and Resources

    Automated visual tracking of animals is rapidly becoming an indispensable tool for the study of behavior. It offers a quantitative methodology by which organisms' sensing and decision-making can be studied in a wide range of ecological contexts. Despite this, existing solutions tend to be challenging to deploy in practice, especially when considering long and/or high-resolution video-streams. Here, we present TRex, a fast and easy-to-use solution for tracking a large number of individuals simultaneously using background-subtraction with real-time (60Hz) tracking performance for up to approximately 256 individuals and estimates 2D visual-fields, outlines, and head/rear of bilateral animals, both in open and closed-loop contexts. Additionally, TRex offers highly-accurate, deep-learning-based visual identification of up to approximately 100 unmarked individuals, where it is between 2.5-46.7 times faster, and requires 2-10 times less memory, than comparable software (with relative performance increasing for more organisms/longer videos) and provides interactive data-exploration within an intuitive, platform-independent graphical user-interface.

    1. Computational and Systems Biology
    2. Medicine
    Amit Frishberg et al.
    Research Article Updated

    Human diseases arise in a complex ecosystem composed of disease mechanisms and the whole-body state. However, the precise nature of the whole-body state and its relations with disease remain obscure. Here we map similarities among clinical parameters in normal physiological settings, including a large collection of metabolic, hemodynamic, and immune parameters, and then use the mapping to dissect phenotypic states. We find that the whole-body state is faithfully represented by a quantitative two-dimensional model. One component of the whole-body state represents ‘metabolic syndrome’ (MetS) – a conventional way to determine the cardiometabolic state. The second component is decoupled from the classical MetS, suggesting a novel ‘non-classical MetS’ that is characterized by dozens of parameters, including dysregulated lipoprotein parameters (e.g. low free cholesterol in small high-density lipoproteins) and attenuated cytokine responses of immune cells to ex vivo stimulations. Both components are associated with disease, but differ in their particular associations, thus opening new avenues for improved personalized diagnosis and treatment. These results provide a practical paradigm to describe whole-body states and to dissect complex disease within the ecosystem of the human body.